These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34536845)

  • 1. When microbial electrochemistry meets UV: The applicability to high-strength real pharmaceutical industry wastewater.
    Zou R; Tang K; Hambly AC; Wünsch UJ; Andersen HR; Angelidaki I; Zhang Y
    J Hazard Mater; 2022 Feb; 423(Pt B):127151. PubMed ID: 34536845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An innovative microbial electrochemical ultraviolet photolysis cell (MEUC) for efficient degradation of carbamazepine.
    Zou R; Tang K; Angelidaki I; Andersen HR; Zhang Y
    Water Res; 2020 Dec; 187():116451. PubMed ID: 33007673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.
    Zhang Z
    Water Sci Technol; 2017 Dec; 76(11-12):3278-3288. PubMed ID: 29236007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-electrolysis technology for industrial wastewater treatment.
    Jin YZ; Zhang YF; Li W
    J Environ Sci (China); 2003 May; 15(3):334-8. PubMed ID: 12938982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of pharmaceutical wastewater using interior micro-electrolysis/Fenton oxidation-coagulation and biological degradation.
    Xu X; Cheng Y; Zhang T; Ji F; Xu X
    Chemosphere; 2016 Jun; 152():23-30. PubMed ID: 26953729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical oxidation of pharmaceutical effluent using cast iron electrode.
    Abhijit D; Lokesh KS; Bejankiwar RS; Gowda TP
    J Environ Sci Eng; 2005 Jan; 47(1):21-4. PubMed ID: 16669330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocoagulation applied for textile wastewater oxidation using iron slag as electrodes.
    De Maman R; da Luz VC; Behling L; Dervanoski A; Dalla Rosa C; Pasquali GDL
    Environ Sci Pollut Res Int; 2022 May; 29(21):31713-31722. PubMed ID: 35018597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of mixed industrial wastewater by electrocoagulation and indirect electrochemical oxidation.
    Nidheesh PV; Kumar A; Syam Babu D; Scaria J; Suresh Kumar M
    Chemosphere; 2020 Jul; 251():126437. PubMed ID: 32171129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Advanced treatment of coking wastewater with a novel heterogeneous electro-Fenton technology].
    Li HT; Li YP; Zhang AY; Cao HB; Li XG; Zhang Y
    Huan Jing Ke Xue; 2011 Jan; 32(1):171-8. PubMed ID: 21404683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis.
    Tsioptsias C; Petridis D; Athanasakis N; Lemonidis I; Deligiannis A; Samaras P
    J Environ Manage; 2015 Dec; 164():104-13. PubMed ID: 26363257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined chemical and biological oxidation of penicillin formulation effluent.
    Alaton IA; Dogruel S; Baykal E; Gerone G
    J Environ Manage; 2004 Nov; 73(2):155-63. PubMed ID: 15380320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Electrochemical Treatment Process Conditions for Distillery Effluent Using Response Surface Methodology.
    Arulmathi P; Elangovan G; Begum AF
    ScientificWorldJournal; 2015; 2015():581463. PubMed ID: 26491716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined electrocoagulation and TiO(2) photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries.
    Boroski M; Rodrigues AC; Garcia JC; Sampaio LC; Nozaki J; Hioka N
    J Hazard Mater; 2009 Feb; 162(1):448-54. PubMed ID: 18573596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes.
    Kumar A; Nidheesh PV; Suresh Kumar M
    Chemosphere; 2018 Aug; 205():587-593. PubMed ID: 29715673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of acid blue 40 dye solution and dye house wastewater from textile industry by photo-assisted electrochemical process.
    Moraes PB; Pelegrino RR; Bertazzoli R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Dec; 42(14):2131-8. PubMed ID: 18074285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards practical integration of MBR with electrochemical AOP: Improved biodegradability of real pharmaceutical wastewater and fouling mitigation.
    Gharibian S; Hazrati H
    Water Res; 2022 Jun; 218():118478. PubMed ID: 35472746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: a post-treatment study.
    Yetilmezsoy K; Ilhan F; Sapci-Zengin Z; Sakar S; Gonullu MT
    J Hazard Mater; 2009 Feb; 162(1):120-32. PubMed ID: 18554794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of coagulation, ozone and ferrate treatment processes for color, COD and toxicity removal from complex textile wastewater.
    Malik SN; Ghosh PC; Vaidya AN; Waindeskar V; Das S; Mudliar SN
    Water Sci Technol; 2017 Sep; 76(5-6):1001-1010. PubMed ID: 28876242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of high-strength pharmaceutical wastewater by electrocoagulation combined with anaerobic process.
    Deshpande AM; Satyanarayan S; Ramakant S
    Water Sci Technol; 2010; 61(2):463-72. PubMed ID: 20107273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.