These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34536932)

  • 21. On the clustering of bulk nanobubbles and their colloidal stability.
    Jadhav AJ; Barigou M
    J Colloid Interface Sci; 2021 Nov; 601():816-824. PubMed ID: 34107317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Does gas supersaturation by a chemical reaction produce bulk nanobubbles?
    Alheshibri M; Jehannin M; Coleman VA; Craig VSJ
    J Colloid Interface Sci; 2019 Oct; 554():388-395. PubMed ID: 31306949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study on Nanobubble-on-Pancake Objects Forming at Polystyrene/Water Interface.
    Li D; Pan Y; Zhao X; Bhushan B
    Langmuir; 2016 Nov; 32(43):11256-11264. PubMed ID: 27391804
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring nanobubble nucleation at early-stage within a sub-9 nm solid-state nanopore.
    Li Q; Ying YL; Hu YX; Liu SC; Long YT
    Electrophoresis; 2020 Jun; 41(10-11):959-965. PubMed ID: 31652002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation of nanoparticles upon mixing ethanol and water; Nanobubbles or Not?
    Alheshibri M; Craig VSJ
    J Colloid Interface Sci; 2019 Apr; 542():136-143. PubMed ID: 30735888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stable Air Nanobubbles in Water: the Importance of Organic Contaminants.
    Eklund F; Swenson J
    Langmuir; 2018 Sep; 34(37):11003-11009. PubMed ID: 30198268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interfacial gas nanobubbles or oil nanodroplets?
    Wang X; Zhao B; Hu J; Wang S; Tai R; Gao X; Zhang L
    Phys Chem Chem Phys; 2017 Jan; 19(2):1108-1114. PubMed ID: 27942625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface charge-induced EDL interaction on the contact angle of surface nanobubbles.
    Jing D; Li D; Pan Y; Bhushan B
    Langmuir; 2016 Nov; 32(43):11123-11132. PubMed ID: 27258966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of induced nanobubbles from water/graphite interfaces by partial degassing.
    Zhang XH; Li G; Maeda N; Hu J
    Langmuir; 2006 Oct; 22(22):9238-43. PubMed ID: 17042536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the "Gas Tunnel" between Neighboring Nanobubbles.
    Li D; Zeng B; Wang Y
    Langmuir; 2019 Nov; 35(47):15029-15037. PubMed ID: 31702925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Progress on the Surface Nanobubble Story: What is in the bubble? Why does it exist?
    Peng H; Birkett GR; Nguyen AV
    Adv Colloid Interface Sci; 2015 Aug; 222():573-80. PubMed ID: 25267688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrahigh Density of Gas Molecules Confined in Surface Nanobubbles in Ambient Water.
    Zhou L; Wang X; Shin HJ; Wang J; Tai R; Zhang X; Fang H; Xiao W; Wang L; Wang C; Gao X; Hu J; Zhang L
    J Am Chem Soc; 2020 Mar; 142(12):5583-5593. PubMed ID: 32111116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of surface modification on interfacial nanobubble morphology and contact line tension.
    Rangharajan KK; Kwak KJ; Conlisk AT; Wu Y; Prakash S
    Soft Matter; 2015 Jul; 11(26):5214-23. PubMed ID: 26041331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular simulations on the stability and dynamics of bulk nanobubbles in aqueous environments.
    Lu Y; Yang L; Kuang Y; Song Y; Zhao J; Sum AK
    Phys Chem Chem Phys; 2021 Dec; 23(48):27533-27542. PubMed ID: 34874384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrolytically generated nanobubbles on highly orientated pyrolytic graphite surfaces.
    Yang S; Tsai P; Kooij ES; Prosperetti A; Zandvliet HJ; Lohse D
    Langmuir; 2009 Feb; 25(3):1466-74. PubMed ID: 19123858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On Nanobubble Dynamics under an Oscillating Pressure Field during Salting-out Effects and Its DLVO Potential.
    Agarwal K; Trivedi M; Ohl CD; Nirmalkar N
    Langmuir; 2023 Apr; 39(15):5250-5262. PubMed ID: 37014662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.
    Sujith KS; Ramachandran CN
    J Phys Chem B; 2017 Jan; 121(1):153-163. PubMed ID: 27935719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How bulk nanobubbles are stable over a wide range of temperatures.
    Li M; Ma X; Eisener J; Pfeiffer P; Ohl CD; Sun C
    J Colloid Interface Sci; 2021 Aug; 596():184-198. PubMed ID: 33845226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic mass transfer of CO
    Ho TM; Yang J; Tsai PA
    Lab Chip; 2021 Oct; 21(20):3942-3951. PubMed ID: 34636830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanobubbles do not sit alone at the solid-liquid interface.
    Peng H; Hampton MA; Nguyen AV
    Langmuir; 2013 May; 29(20):6123-30. PubMed ID: 23597206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.