BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34537172)

  • 1. Role for nitrate assimilatory genes in virulence of Ustilago maydis.
    Khanal S; Schroeder L; Nava-Mercado OA; Mendoza H; Perlin MH
    Fungal Biol; 2021 Oct; 125(10):764-775. PubMed ID: 34537172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinate regulation of Ustilago maydis ammonium transporters and genes involved in mating and pathogenicity.
    Paul JA; Wallen RM; Zhao C; Shi T; Perlin MH
    Fungal Biol; 2018 Jul; 122(7):639-650. PubMed ID: 29880199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of the Ustilago maydis ortholog of the Aspergillus sporulation regulator medA affects mating and virulence through pheromone response.
    Chacko N; Gold S
    Fungal Genet Biol; 2012 Jun; 49(6):426-32. PubMed ID: 22537792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pep4 gene encoding proteinase A is involved in dimorphism and pathogenesis of Ustilago maydis.
    Soberanes-Gutiérrez CV; Juárez-Montiel M; Olguín-Rodríguez O; Hernández-Rodríguez C; Ruiz-Herrera J; Villa-Tanaca L
    Mol Plant Pathol; 2015 Oct; 16(8):837-46. PubMed ID: 25597948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of UmRrm75, a gene involved in dimorphism and virulence of Ustilago maydis.
    Rodríguez-Kessler M; Baeza-Montañez L; García-Pedrajas MD; Tapia-Moreno A; Gold S; Jiménez-Bremont JF; Ruiz-Herrera J
    Microbiol Res; 2012 May; 167(5):270-82. PubMed ID: 22154329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tec1, a member of the TEA transcription factors family, is involved in virulence and basidiocarp development in Ustilago maydis.
    León-Ramírez CG; Sánchez-Arreguin JA; Cabrera-Ponce JL; Martínez-Soto D; Ortiz-Castellanos ML; Aréchiga-Carvajal ET; Salazar-Chávez MF; Sánchez-Segura L; Ruiz-Herrera J
    Int Microbiol; 2022 Jan; 25(1):17-26. PubMed ID: 34185162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ustilago maydis phosphodiesterases play a role in the dimorphic switch and in pathogenicity.
    Agarwal C; Aulakh KB; Edelen K; Cooper M; Wallen RM; Adams S; Schultz DJ; Perlin MH
    Microbiology (Reading); 2013 May; 159(Pt 5):857-868. PubMed ID: 23475947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three regulators of G protein signaling differentially affect mating, morphology and virulence in the smut fungus Ustilago maydis.
    Moretti M; Wang L; Grognet P; Lanver D; Link H; Kahmann R
    Mol Microbiol; 2017 Sep; 105(6):901-921. PubMed ID: 28686341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementation of Ustilago maydis MAPK mutants by a wheat leaf rust, Puccinia triticina homolog: potential for functional analyses of rust genes.
    Hu G; Kamp A; Linning R; Naik S; Bakkeren G
    Mol Plant Microbe Interact; 2007 Jun; 20(6):637-47. PubMed ID: 17555272
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Yun YH; Oh MH; Kim JY; Kim SH
    J Microbiol Biotechnol; 2017 May; 27(5):1010-1022. PubMed ID: 28237997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The general transcriptional repressor Tup1 is required for dimorphism and virulence in a fungal plant pathogen.
    Elías-Villalobos A; Fernández-Álvarez A; Ibeas JI
    PLoS Pathog; 2011 Sep; 7(9):e1002235. PubMed ID: 21909277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two members of the Ustilago maydis velvet family influence teliospore development and virulence on maize seedlings.
    Karakkat BB; Gold SE; Covert SF
    Fungal Genet Biol; 2013 Dec; 61():111-9. PubMed ID: 24064149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization from pathogenic fungi of genes encoding ammonium permeases and their roles in dimorphism.
    Smith DG; Garcia-Pedrajas MD; Gold SE; Perlin MH
    Mol Microbiol; 2003 Oct; 50(1):259-75. PubMed ID: 14507379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcineurin is an antagonist to PKA protein phosphorylation required for postmating filamentation and virulence, while PP2A is required for viability in Ustilago maydis.
    Egan JD; García-Pedrajas MD; Andrews DL; Gold SE
    Mol Plant Microbe Interact; 2009 Oct; 22(10):1293-301. PubMed ID: 19737102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Ustilago maydis/Zea mays pathosystem: transcriptional responses and novel functional aspects of a fungal calcineurin regulatory B subunit.
    Donaldson ME; Meng S; Gagarinova A; Babu M; Lambie SC; Swiadek AA; Saville BJ
    Fungal Genet Biol; 2013; 58-59():91-104. PubMed ID: 23973481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polar growth in the infectious hyphae of the phytopathogen ustilago maydis depends on a virulence-specific cyclin.
    Flor-Parra I; Castillo-Lluva S; Pérez-Martín J
    Plant Cell; 2007 Oct; 19(10):3280-96. PubMed ID: 17921314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Ustilago maydis dimorphism, sporulation, and pathogenic development by a transcription factor with a highly conserved APSES domain.
    García-Pedrajas MD; Baeza-Montañez L; Gold SE
    Mol Plant Microbe Interact; 2010 Feb; 23(2):211-22. PubMed ID: 20064064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The multifunctional beta-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis.
    Klose J; Kronstad JW
    Eukaryot Cell; 2006 Dec; 5(12):2047-61. PubMed ID: 16998075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome editing in Ustilago maydis using the CRISPR-Cas system.
    Schuster M; Schweizer G; Reissmann S; Kahmann R
    Fungal Genet Biol; 2016 Apr; 89():3-9. PubMed ID: 26365384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The vtc4 gene influences polyphosphate storage, morphogenesis, and virulence in the maize pathogen Ustilago maydis.
    Boyce KJ; Kretschmer M; Kronstad JW
    Eukaryot Cell; 2006 Aug; 5(8):1399-409. PubMed ID: 16896223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.