BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34537296)

  • 1. Enzyme-support interactions and inactivation conditions determine Thermomyces lanuginosus lipase inactivation pathways: Functional and florescence studies.
    Souza PMP; Carballares D; Lopez-Carrobles N; Gonçalves LRB; Lopez-Gallego F; Rodrigues S; Fernandez-Lafuente R
    Int J Biol Macromol; 2021 Nov; 191():79-91. PubMed ID: 34537296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new heterofunctional support for enzyme immobilization: PEI functionalized Fe
    Bezerra RM; Monteiro RRC; Neto DMA; da Silva FFM; de Paula RCM; de Lemos TLG; Fechine PBA; Correa MA; Bohn F; Gonçalves LRB; Dos Santos JCS
    Enzyme Microb Technol; 2020 Aug; 138():109560. PubMed ID: 32527529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of Lipase B from
    Souza PMP; Carballares D; Gonçalves LRB; Fernandez-Lafuente R; Rodrigues S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the regioselectivity of Thermomyces lanuginosus lipase via biocatalyst engineering for the Ethanolysis of oil in fully anhydrous medium.
    Abreu Silveira E; Moreno-Perez S; Basso A; Serban S; Pestana Mamede R; Tardioli PW; Sanchez Farinas C; Rocha-Martin J; Fernandez-Lorente G; Guisan JM
    BMC Biotechnol; 2017 Dec; 17(1):88. PubMed ID: 29246143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agroindustrial Wastes as a Support for the Immobilization of Lipase from
    K de S Lira R; T Zardini R; C C de Carvalho M; Wojcieszak R; G F Leite S; Itabaiana I
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33802693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning almond lipase features by the buffer used during immobilization: The apparent biocatalysts stability depends on the immobilization and inactivation buffers and the substrate utilized.
    Cherni O; Carballares D; Siar EH; Abellanas-Perez P; de Andrades D; de Moraes Polizeli MLT; Rocha-Martin J; Bahri S; Fernandez-Lafuente R
    J Biotechnol; 2024 Aug; 391():72-80. PubMed ID: 38876311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Immobilized Enzyme Features by Combining Solid-Phase Physicochemical Modification and Mineralization.
    Guimarães JR; Carballares D; Rocha-Martin J; Tardioli PW; Fernandez-Lafuente R
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Immobilization of Lipases on Heterofunctional Octyl-Amino Agarose Beads Prevents Enzyme Desorption.
    Rueda N; Albuquerque TL; Bartolome-Cabrero R; Fernandez-Lopez L; Torres R; Ortiz C; Dos Santos JC; Barbosa O; Fernandez-Lafuente R
    Molecules; 2016 May; 21(5):. PubMed ID: 27196882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating the properties of the lipase from Thermomyces lanuginosus immobilized on octyl agarose beads by altering the immobilization conditions.
    Lokha Y; Arana-Peña S; Rios NS; Mendez-Sanchez C; Gonçalves LRB; Lopez-Gallego F; Fernandez-Lafuente R
    Enzyme Microb Technol; 2020 Feb; 133():109461. PubMed ID: 31874681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the catalytic properties of lipases immobilized on divinylsulfone activated agarose by altering its nanoenvironment.
    dos Santos JC; Rueda N; Gonçalves LR; Fernandez-Lafuente R
    Enzyme Microb Technol; 2015 Sep; 77():1-7. PubMed ID: 26138393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of protein load on stability of immobilized enzymes.
    Fernandez-Lopez L; Pedrero SG; Lopez-Carrobles N; Gorines BC; Virgen-Ortíz JJ; Fernandez-Lafuente R
    Enzyme Microb Technol; 2017 Mar; 98():18-25. PubMed ID: 28110660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevance of substrates and products on the desorption of lipases physically adsorbed on hydrophobic supports.
    Virgen-Ortíz JJ; Tacias-Pascacio VG; Hirata DB; Torrestiana-Sanchez B; Rosales-Quintero A; Fernandez-Lafuente R
    Enzyme Microb Technol; 2017 Jan; 96():30-35. PubMed ID: 27871382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutaraldehyde modification of lipases immobilized on octyl agarose beads: Roles of the support enzyme loading and chemical amination of the enzyme on the final enzyme features.
    Abellanas-Perez P; Carballares D; Fernandez-Lafuente R; Rocha-Martin J
    Int J Biol Macromol; 2023 Sep; 248():125853. PubMed ID: 37460068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved immobilization of lipase from Thermomyces lanuginosus on a new chitosan-based heterofunctional support: Mixed ion exchange plus hydrophobic interactions.
    Okura NS; Sabi GJ; Crivellenti MC; Gomes RAB; Fernandez-Lafuente R; Mendes AA
    Int J Biol Macromol; 2020 Nov; 163():550-561. PubMed ID: 32645498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of ion-exchange supports via activation of epoxy-SiO
    Bolina ICA; Salviano AB; Tardioli PW; Cren ÉC; Mendes AA
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2354-2365. PubMed ID: 30179692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of the chemical modification on immobilized lipase features are affected by the enzyme crowding in the support.
    Abellanas-Perez P; Carballares D; Rocha-Martin J; Fernandez-Lafuente R
    Biotechnol Prog; 2024; 40(1):e3394. PubMed ID: 37828788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The immobilization protocol greatly alters the effects of metal phosphate modification on the activity/stability of immobilized lipases.
    Guimarães JR; Carballares D; Rocha-Martin J; Tardioli PW; Fernandez-Lafuente R
    Int J Biol Macromol; 2022 Dec; 222(Pt B):2452-2466. PubMed ID: 36220414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization on octyl-agarose beads and some catalytic features of commercial preparations of lipase a from Candida antarctica (Novocor ADL): Comparison with immobilized lipase B from Candida antarctica.
    Arana-Peña S; Lokha Y; Fernández-Lafuente R
    Biotechnol Prog; 2019 Jan; 35(1):e2735. PubMed ID: 30341806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: Improved stability and reusability.
    Rios NS; Mendez-Sanchez C; Arana-Peña S; Rueda N; Ortiz C; Gonçalves LRB; Fernandez-Lafuente R
    Biochim Biophys Acta Proteins Proteom; 2019 Sep; 1867(9):741-747. PubMed ID: 31202001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of polyethylenimine to produce immobilized lipase multilayers biocatalysts with very high volumetric activity using octyl-agarose beads: Avoiding enzyme release during multilayer production.
    Arana-Peña S; Rios NS; Mendez-Sanchez C; Lokha Y; Gonçalves LRB; Fernández-Lafuente R
    Enzyme Microb Technol; 2020 Jun; 137():109535. PubMed ID: 32423679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.