These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34537528)

  • 41. OH-Initiated Reactions of
    Hudzik JM; Barekati-Goudarzi M; Khachatryan L; Bozzelli JW; Ruckenstein E; Asatryan R
    J Phys Chem A; 2020 Jun; 124(24):4875-4904. PubMed ID: 32432475
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.
    Al-Rahbi AS; Onwudili JA; Williams PT
    Bioresour Technol; 2016 Mar; 204():71-79. PubMed ID: 26773946
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of inherent hierarchical porous char with alkali and alkaline earth metallic species on lignin pyrolysis.
    Wang S; Li Z; Bai X; Yi W; Fu P
    Bioresour Technol; 2018 Nov; 268():323-331. PubMed ID: 30092486
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impacts of temperature on evolution of char structure during pyrolysis of lignin.
    Zhang C; Shao Y; Zhang L; Zhang S; Westerhof RJM; Liu Q; Jia P; Li Q; Wang Y; Hu X
    Sci Total Environ; 2020 Jan; 699():134381. PubMed ID: 31677466
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Degradation of phenols formed during lignin pyrolysis by microfungi of genera Trichoderma and Penicillium].
    Karetnikova EA; Zhirkova AD
    Izv Akad Nauk Ser Biol; 2005; (5):539-44. PubMed ID: 16240749
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Influence of urea formaldehyde resin on pyrolysis of biomass: a modeling study by TG-FTIR].
    Li SJ; Mu J; Zhang Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jun; 34(6):1497-501. PubMed ID: 25358153
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Pyrolytic depolymerization mechanism of a lignin model compound with α-O-4 linkage].
    Jiang X; Lu Q; Dong X; Chen C; Dong C
    Sheng Wu Gong Cheng Xue Bao; 2015 Oct; 31(10):1512-9. PubMed ID: 26964340
    [TBL] [Abstract][Full Text] [Related]  

  • 48. OH-Initiated Reactions of
    Hudzik JM; Bozzelli JW; Asatryan R; Ruckenstein E
    J Phys Chem A; 2020 Jun; 124(24):4905-4915. PubMed ID: 32432474
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phenols from pyrolysis and co-pyrolysis of tobacco biomass components.
    Kibet JK; Khachatryan L; Dellinger B
    Chemosphere; 2015 Nov; 138():259-65. PubMed ID: 26091866
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The mechanism of wet/dry torrefaction pretreatment on the pyrolysis performance of tobacco stalk.
    Sun Y; He Z; Tu R; Wu YJ; Jiang EC; Xu XW
    Bioresour Technol; 2019 Aug; 286():121390. PubMed ID: 31078074
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Comprehensive Characterization of Pyrolysis Oil from Softwood Barks.
    Ben H; Wu F; Wu Z; Han G; Jiang W; Ragauskas AJ
    Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31450759
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of lignin-carbohydrate and lignin-lignin linkages after hydrolase treatment of xylan-lignin, glucomannan-lignin and glucan-lignin complexes from spruce wood.
    Du X; Pérez-Boada M; Fernández C; Rencoret J; del Río JC; Jiménez-Barbero J; Li J; Gutiérrez A; Martínez AT
    Planta; 2014 May; 239(5):1079-90. PubMed ID: 24531838
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets.
    Hu Q; Yang H; Yao D; Zhu D; Wang X; Shao J; Chen H
    Bioresour Technol; 2016 Jan; 200():521-7. PubMed ID: 26524250
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metal-Free Biomass-Derived Environmentally Persistent Free Radicals (Bio-EPFRs) from Lignin Pyrolysis.
    Khachatryan L; Barekati-Goudarzi M; Asatryan R; Ozarowski A; Boldor D; Lomnicki SM; Cormier SA
    ACS Omega; 2022 Aug; 7(34):30241-30249. PubMed ID: 36061701
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photocatalytic degradation of lignin and lignin models, using titanium dioxide: the role of the hydroxyl radical.
    Machado AE; Furuyama AM; Falone SZ; Ruggiero R; Perez Dda S; Castellan A
    Chemosphere; 2000 Jan; 40(1):115-24. PubMed ID: 10665453
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermochemical behavior of tris(2-butoxyethyl) phosphate (TBEP) during co-pyrolysis with biomass.
    Qian TT; Li DC; Jiang H
    Environ Sci Technol; 2014 Sep; 48(18):10734-42. PubMed ID: 25154038
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selective production of phenols from lignin via microwave pyrolysis using different carbonaceous susceptors.
    Yerrayya A; Suriapparao DV; Natarajan U; Vinu R
    Bioresour Technol; 2018 Dec; 270():519-528. PubMed ID: 30248651
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Renewable jet-fuel range hydrocarbons production from co-pyrolysis of lignin and soapstock with the activated carbon catalyst.
    Duan D; Zhang Y; Lei H; Villota E; Ruan R
    Waste Manag; 2019 Apr; 88():1-9. PubMed ID: 31079620
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical.
    Buckingham GT; Porterfield JP; Kostko O; Troy TP; Ahmed M; Robichaud DJ; Nimlos MR; Daily JW; Ellison GB
    J Chem Phys; 2016 Jul; 145(1):014305. PubMed ID: 27394106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.