BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34537597)

  • 1. Real-time prediction of river chloride concentration using ensemble learning.
    Zhang Q; Li Z; Zhu L; Zhang F; Sekerinski E; Han JC; Zhou Y
    Environ Pollut; 2021 Dec; 291():118116. PubMed ID: 34537597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed.
    Anmala J; Turuganti V
    Water Environ Res; 2021 Nov; 93(11):2360-2373. PubMed ID: 34528328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting reservoir sedimentation using multilayer perceptron - Artificial neural network model with measured and forecasted hydrometeorological data in Gibe-III reservoir, Omo-Gibe River basin, Ethiopia.
    Lukas P; Melesse AM; Kenea TT
    J Environ Manage; 2024 May; 359():121018. PubMed ID: 38714033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.
    Khullar S; Singh N
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of hard and soft supervised machine learning for flood susceptibility mapping.
    Andaryani S; Nourani V; Haghighi AT; Keesstra S
    J Environ Manage; 2021 Aug; 291():112731. PubMed ID: 33962279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling daily water temperature for rivers: comparison between adaptive neuro-fuzzy inference systems and artificial neural networks models.
    Zhu S; Heddam S; Nyarko EK; Hadzima-Nyarko M; Piccolroaz S; Wu S
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):402-420. PubMed ID: 30406582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Newly explored machine learning model for river flow time series forecasting at Mary River, Australia.
    Cui F; Salih SQ; Choubin B; Bhagat SK; Samui P; Yaseen ZM
    Environ Monit Assess; 2020 Nov; 192(12):761. PubMed ID: 33188607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How far spatial resolution affects the ensemble machine learning based flood susceptibility prediction in data sparse region.
    Saha TK; Pal S; Talukdar S; Debanshi S; Khatun R; Singha P; Mandal I
    J Environ Manage; 2021 Nov; 297():113344. PubMed ID: 34314957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rainfall prediction using multiple inclusive models and large climate indices.
    Mohamadi S; Sheikh Khozani Z; Ehteram M; Ahmed AN; El-Shafie A
    Environ Sci Pollut Res Int; 2022 Dec; 29(56):85312-85349. PubMed ID: 35790639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors.
    Heddam S; Kisi O
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16702-16724. PubMed ID: 28560629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainty and spatial analysis in wheat yield prediction based on robust inclusive multiple models.
    Soroush F; Ehteram M; Seifi A
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):20887-20906. PubMed ID: 36261636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of daily dissolved oxygen concentration for river water quality using conventional regression analysis, multivariate adaptive regression splines, and TreeNet techniques.
    Nacar S; Mete B; Bayram A
    Environ Monit Assess; 2020 Nov; 192(12):752. PubMed ID: 33159587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of data intelligence models coupled with ensemble machine learning for prediction of water quality index.
    Abba SI; Pham QB; Saini G; Linh NTT; Ahmed AN; Mohajane M; Khaledian M; Abdulkadir RA; Bach QV
    Environ Sci Pollut Res Int; 2020 Nov; 27(33):41524-41539. PubMed ID: 32686045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive respiratory signal prediction using dual multi-layer perceptron neural networks.
    Sun W; Wei Q; Ren L; Dang J; Yin FF
    Phys Med Biol; 2020 Sep; 65(18):185005. PubMed ID: 32924976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A predictive model of recreational water quality based on adaptive synthetic sampling algorithms and machine learning.
    Xu T; Coco G; Neale M
    Water Res; 2020 Jun; 177():115788. PubMed ID: 32330740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Intelligence-Based Ensemble Learning Model for Prediction of Hepatitis C Disease.
    Edeh MO; Dalal S; Dhaou IB; Agubosim CC; Umoke CC; Richard-Nnabu NE; Dahiya N
    Front Public Health; 2022; 10():892371. PubMed ID: 35570979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study.
    Elamrani Abou Elassad Z; Mousannif H; Al Moatassime H
    Traffic Inj Prev; 2020; 21(3):201-208. PubMed ID: 32125890
    [No Abstract]   [Full Text] [Related]  

  • 18. Prediction of water quality parameters using machine learning models: a case study of the Karun River, Iran.
    Nouraki A; Alavi M; Golabi M; Albaji M
    Environ Sci Pollut Res Int; 2021 Oct; 28(40):57060-57072. PubMed ID: 34081285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the incubated river water quality indicator based on machine learning and deep learning paradigms: BOD5 Prediction.
    Kim S; Alizamir M; Seo Y; Heddam S; Chung IM; Kim YO; Kisi O; Singh VP
    Math Biosci Eng; 2022 Sep; 19(12):12744-12773. PubMed ID: 36654020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring.
    Najah A; El-Shafie A; Karim OA; El-Shafie AH
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):1658-1670. PubMed ID: 23949111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.