BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 34537614)

  • 1. Insight into the correlations among rheological behaviour, protein molecular structure and 3D printability during the processing of surimi from golden pompano (Trachinotus ovatus).
    Liu Y; Sun Q; Wei S; Xia Q; Pan Y; Ji H; Deng C; Hao J; Liu S
    Food Chem; 2022 Mar; 371():131046. PubMed ID: 34537614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LF-NMR as a tool for predicting the 3D printability of surimi-starch systems.
    Liu Y; Sun Q; Wei S; Xia Q; Pan Y; Liu S; Ji H; Deng C; Hao J
    Food Chem; 2022 Apr; 374():131727. PubMed ID: 34915372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing.
    Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ
    J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory mechanisms governing collagen peptides and their 3D printing application for frozen surimi.
    Shi Y; Tu L; Yuan C; Wu J; Li X; Wang S; Chen H; Chen X
    J Food Sci; 2022 Jun; 87(6):2692-2706. PubMed ID: 35590483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of a collagen peptide-fish oil high internal phase emulsion on the printability and gelation of 3D-printed surimi gel inks.
    Lu S; Pei Z; Lu Q; Li Q; He Y; Feng A; Liu Z; Xue C; Liu J; Lin X; Li Y; Li C
    Food Chem; 2024 Jul; 446():138810. PubMed ID: 38402769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on the correlation between changes in water and texture properties during the processing of surimi from golden pompano (Trachinotus ovatus).
    Liu Y; Sun Q; Pan Y; Wei S; Xia Q; Liu S; Ji H; Deng C; Hao J
    J Food Sci; 2021 Feb; 86(2):376-384. PubMed ID: 33438246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing.
    Lu Y; Rai R; Nitin N
    Food Res Int; 2023 Nov; 173(Pt 2):113384. PubMed ID: 37803721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a Waterborne Polyurethane-Urea Ink for Direct Ink Writing 3D Printing.
    Vadillo J; Larraza I; Calvo-Correas T; Gabilondo N; Derail C; Eceiza A
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on 3D Printing of Shrimp Surimi Adding Three Edible Oils.
    Pan Y; Sun Q; Liu Y; Wei S; Han Z; Zheng O; Ji H; Zhang B; Liu S
    Foods; 2024 Jan; 13(3):. PubMed ID: 38338564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions.
    Kwak C; Young Ryu S; Park H; Lim S; Yang J; Kim J; Hyung Kim J; Lee J
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):81-89. PubMed ID: 32814225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing.
    Zhao F; Cheng J; Sun M; Yu H; Wu N; Li Z; Zhang J; Li Q; Yang P; Liu Q; Hu X; Ao Y
    Biofabrication; 2020 Jul; 12(4):045011. PubMed ID: 32640428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheological insights into 3D printing of drug products: Drug nanocrystal-poloxamer gels for semisolid extrusion.
    Junnila A; Mortier L; Arbiol A; Harju E; Tomberg T; Hirvonen J; Viitala T; Karttunen AP; Peltonen L
    Int J Pharm; 2024 Apr; 655():124070. PubMed ID: 38554740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing.
    Teoh XY; Zhang B; Belton P; Chan SY; Qi S
    Pharm Res; 2022 Jun; 39(6):1267-1279. PubMed ID: 35661083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coaxial micro-extrusion of a calcium phosphate ink with aqueous solvents improves printing stability, structure fidelity and mechanical properties.
    Bagnol R; Sprecher C; Peroglio M; Chevalier J; Mahou R; Büchler P; Richards G; Eglin D
    Acta Biomater; 2021 Apr; 125():322-332. PubMed ID: 33631396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances on enhancing 3D printing quality of protein-based inks: A review.
    Tian H; Wu J; Hu Y; Chen X; Cai X; Wen Y; Chen H; Huang J; Wang S
    Compr Rev Food Sci Food Saf; 2024 May; 23(3):e13349. PubMed ID: 38638060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy.
    Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J
    J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Ca
    Li G; Zhan J; Hu Z; Huang J; Xu E; Yuan C; Chen J; Yao Q; Hu Y
    J Sci Food Agric; 2023 Sep; 103(12):5927-5937. PubMed ID: 37139663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation on characteristics of 3D printing using Nostoc sphaeroides biomass.
    An YJ; Guo CF; Zhang M; Zhong ZP
    J Sci Food Agric; 2019 Jan; 99(2):639-646. PubMed ID: 29951991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.