These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34537697)

  • 1. Effect of pyrolysis conditions on environmentally persistent free radicals (EPFRs) in biochar from co-pyrolysis of urea and cellulose.
    Bi D; Huang F; Jiang M; He Z; Lin X
    Sci Total Environ; 2022 Jan; 805():150339. PubMed ID: 34537697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into biomass feedstock on formation of biochar-bound environmentally persistent free radicals under different pyrolysis temperatures.
    Wang Y; Gu X; Huang Y; Ding Z; Chen Y; Hu X
    RSC Adv; 2022 Jun; 12(30):19318-19326. PubMed ID: 35865560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pyrolysis temperature on the activated permonosulfate degradation of antibiotics in nitrogen and sulfur-doping biochar: Key role of environmentally persistent free radicals.
    Zhang Y; Xu M; He R; Zhao J; Kang W; Lv J
    Chemosphere; 2022 May; 294():133737. PubMed ID: 35090846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of biochar, fertilizers and cultivation type on environmentally persistent free radicals in agricultural soil.
    Baltrėnaitė-Gedienė E; Lomnicki S; Guo C
    Environ Technol Innov; 2022 Nov; 28():. PubMed ID: 38881717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars.
    Odinga ES; Waigi MG; Gudda FO; Wang J; Yang B; Hu X; Li S; Gao Y
    Environ Int; 2020 Jan; 134():105172. PubMed ID: 31739134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of persulfate activation by biochar for the catalytic degradation of antibiotics: Synergistic effects of environmentally persistent free radicals and the defective structure of biochar.
    Zhang Y; Xu M; Liang S; Feng Z; Zhao J
    Sci Total Environ; 2021 Nov; 794():148707. PubMed ID: 34214814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medium-Low Temperature Conditions Induce the Formation of Environmentally Persistent Free Radicals in Microplastics with Conjugated Aromatic-Ring Structures during Sewage Sludge Pyrolysis.
    Yuan Z; Huang Q; Wang Z; Wang H; Luo J; Zhu N; Cao X; Lou Z
    Environ Sci Technol; 2022 Nov; 56(22):16209-16220. PubMed ID: 36165785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil.
    Wang X; Zhou W; Liang G; Song D; Zhang X
    Sci Total Environ; 2015 Dec; 538():137-44. PubMed ID: 26298256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of biochar as a coating material for biochar-coated urea.
    Jia Y; Hu Z; Mu J; Zhang W; Xie Z; Wang G
    Sci Total Environ; 2020 Aug; 731():139063. PubMed ID: 32428752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
    Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K
    J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review.
    Ruan X; Sun Y; Du W; Tang Y; Liu Q; Zhang Z; Doherty W; Frost RL; Qian G; Tsang DCW
    Bioresour Technol; 2019 Jun; 281():457-468. PubMed ID: 30827730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possibilities of the utilization of char from the pyrolysis of tetrapak.
    Raclavská H; Růžičková J; Škrobánková H; Koval S; Kucbel M; Raclavský K; Švédová B; Pavlík P; Juchelková D
    J Environ Manage; 2018 Aug; 219():231-238. PubMed ID: 29747104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecological risk analysis of the solid residues collected from the thermal disposal process of hyperaccumulator Pteris vittata including heavy metals and environmentally persistent free radicals.
    Sun C; Ding D; Chen T; Huang Q; Lu S; Yan J
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):29234-29245. PubMed ID: 31396866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistent free radicals generated from a range of biochars and their physiological effects on wheat seedlings.
    Zhang R; Zimmerman AR; Zhang R; Li P; Zheng Y; Gao B
    Sci Total Environ; 2024 Jan; 908():168260. PubMed ID: 37918750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge.
    Wei S; Zhu M; Fan X; Song J; Peng P; Li K; Jia W; Song H
    Chemosphere; 2019 Mar; 218():624-631. PubMed ID: 30502701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of excess sludge composting process, environmentally persistent free radicals, and microplastics on antibiotics degradation efficiency of aging biochar.
    Zhang Y; Sun Y; He R; Zhao J; Wang J; Yu T; Zhang X; Bildyukevich AV
    Bioresour Technol; 2024 Feb; 393():130070. PubMed ID: 37984667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochar-mediated Fenton-like reaction for the degradation of sulfamethazine: Role of environmentally persistent free radicals.
    Deng R; Luo H; Huang D; Zhang C
    Chemosphere; 2020 Sep; 255():126975. PubMed ID: 32387909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of biochar mediated catalytic degradation of quinolone antibiotics: Important role of environmentally persistent free radicals.
    Zhang Y; Xu M; Liu X; Wang M; Zhao J; Li S; Yin M
    Bioresour Technol; 2021 Apr; 326():124780. PubMed ID: 33556708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled effects of Fenton-like systems with different concentrations of H
    Zhang J; Liu S; Huang F; Bi D; Song J; Chou S
    Environ Pollut; 2024 Oct; 358():124499. PubMed ID: 38964648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pyrolysis conditions on the total contents of polycyclic aromatic hydrocarbons in biochars produced from organic residues: Assessment of their hazard potential.
    De la Rosa JM; Sánchez-Martín ÁM; Campos P; Miller AZ
    Sci Total Environ; 2019 Jun; 667():578-585. PubMed ID: 30833256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.