These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 34537697)
21. Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions. Lu S; Zong Y Environ Sci Pollut Res Int; 2018 Oct; 25(30):30401-30409. PubMed ID: 30159845 [TBL] [Abstract][Full Text] [Related]
22. Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria. Zhang Y; Guo X; Si X; Yang R; Zhou J; Quan X Sci Total Environ; 2019 Oct; 687():348-354. PubMed ID: 31207524 [TBL] [Abstract][Full Text] [Related]
23. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Liao S; Pan B; Li H; Zhang D; Xing B Environ Sci Technol; 2014; 48(15):8581-7. PubMed ID: 24988274 [TBL] [Abstract][Full Text] [Related]
25. Degradation of p-Nitrophenol on Biochars: Role of Persistent Free Radicals. Yang J; Pan B; Li H; Liao S; Zhang D; Wu M; Xing B Environ Sci Technol; 2016 Jan; 50(2):694-700. PubMed ID: 26691611 [TBL] [Abstract][Full Text] [Related]
26. Assessing the effect on the generation of environmentally persistent free radicals in hydrothermal carbonization of sewage sludge. Zhu Y; Wei J; Liu Y; Liu X; Li J; Zhang J Sci Rep; 2019 Nov; 9(1):17092. PubMed ID: 31745230 [TBL] [Abstract][Full Text] [Related]
27. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875 [TBL] [Abstract][Full Text] [Related]
28. Biochar from Acai agroindustry waste: Study of pyrolysis conditions. Sato MK; de Lima HV; Costa AN; Rodrigues S; Pedroso AJS; de Freitas Maia CMB Waste Manag; 2019 Aug; 96():158-167. PubMed ID: 31376960 [TBL] [Abstract][Full Text] [Related]
29. Effects of spent mushroom substrate-derived biochar on soil CO Deng B; Shi Y; Zhang L; Fang H; Gao Y; Luo L; Feng W; Hu X; Wan S; Huang W; Guo X; Siemann E Chemosphere; 2020 May; 246():125608. PubMed ID: 31884231 [TBL] [Abstract][Full Text] [Related]
30. Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry. Qin J; Cheng Y; Sun M; Yan L; Shen G Sci Total Environ; 2016 Nov; 569-570():1-8. PubMed ID: 27323331 [TBL] [Abstract][Full Text] [Related]
31. Pyrolysis of cellulose: Correlation of hydrophilicity with evolution of functionality of biochar. Fan M; Li C; Shao Y; Zhang S; Gholizadeh M; Hu X Sci Total Environ; 2022 Jun; 825():153959. PubMed ID: 35189205 [TBL] [Abstract][Full Text] [Related]
32. Biochar-Associated Free Radicals Reduce Soil Bacterial Diversity: New Insight into Ecoenzymatic Stoichiometry. Yang H; Chen N; Wang Z; Liu J; Qin J; Zhu K; Jia H Environ Sci Technol; 2023 Dec; 57(48):20238-20248. PubMed ID: 37976412 [TBL] [Abstract][Full Text] [Related]
33. Formation and biotoxicity of environmentally persistent free radicals in steelworks soil under thermal treatment. Zhao X; Tang L; Zhang S; Wang J; Czech B; Oleszczuk P; Minkina T; Gao Y J Hazard Mater; 2024 Apr; 467():133697. PubMed ID: 38325092 [TBL] [Abstract][Full Text] [Related]
34. Characteristics and chlorine reactivity of biochar-derived dissolved organic matter: Effects of feedstock type and pyrolysis temperature. Li LP; Liu YH; Ren D; Wang JJ Water Res; 2022 Mar; 211():118044. PubMed ID: 35033743 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Pariyar P; Kumari K; Jain MK; Jadhao PS Sci Total Environ; 2020 Apr; 713():136433. PubMed ID: 31954240 [TBL] [Abstract][Full Text] [Related]
36. Comparative 6+studies of environmentally persistent free radicals on nano-sized coal dusts. Azam S; Kurashov V; Golbeck JH; Bhattacharyya S; Zheng S; Liu S Sci Total Environ; 2023 Jun; 878():163163. PubMed ID: 37003338 [TBL] [Abstract][Full Text] [Related]
37. Urea impregnation into fungus pretreated corn stover to perform pyrolysis for production of nitrogen-containing bio-oil and nitrogen-doped biochar. Sun Z; Liu S; Xu Y; Lu J; Shi H; Li S; Luo C; Dong Q Bioresour Technol; 2023 May; 376():128921. PubMed ID: 36934905 [TBL] [Abstract][Full Text] [Related]
38. Comparative Assessment of Proportions of Urea in Blend for Nitrogen-Rich Pyrolysis: Characteristics and Distribution of Bio-Oil and Biochar. He Z; Liu S; Zhao W; Yin M; Jiang M; Bi D ACS Omega; 2023 Jan; 8(1):1232-1239. PubMed ID: 36643424 [TBL] [Abstract][Full Text] [Related]
39. Energy-efficient biochar production for thermal backfill applications. Patwa D; Bordoloi U; Dubey AA; Ravi K; Sekharan S; Kalita P Sci Total Environ; 2022 Aug; 833():155253. PubMed ID: 35429570 [TBL] [Abstract][Full Text] [Related]
40. Distribution, influence factors, and biotoxicity of environmentally persistent free radical in soil at a typical coking plant. Li Q; Dai L; Wang M; Su G; Wang T; Zhao X; Liu X; Xu Y; Meng J; Shi B Sci Total Environ; 2022 Aug; 835():155493. PubMed ID: 35483459 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]