These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34537962)

  • 21. A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Douglas-fir and lodgepole pine grown and measured with different inorganic nitrogen sources.
    Hawkins BJ; Boukcim H; Plassard C
    Plant Cell Environ; 2008 Mar; 31(3):278-87. PubMed ID: 18034773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae.
    Wagg C; Pautler M; Massicotte HB; Peterson RL
    Mycorrhiza; 2008 Feb; 18(2):103-10. PubMed ID: 18157555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests.
    Liu M; Li C; Xu X; Wanek W; Jiang N; Wang H; Yang X
    Tree Physiol; 2017 Nov; 37(11):1515-1526. PubMed ID: 28482109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental evidence that mycorrhizal nitrogen strategies affect soil carbon.
    Wurzburger N; Brookshire ENJ
    Ecology; 2017 Jun; 98(6):1491-1497. PubMed ID: 28369878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Responses of nutrient capture and fine root morphology of subalpine coniferous tree Picea asperata to nutrient heterogeneity and competition.
    Li D; Nan H; Liang J; Cheng X; Zhao C; Yin H; Yin C; Liu Q
    PLoS One; 2017; 12(11):e0187496. PubMed ID: 29095947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of Heterobasidion root-rot on fine root morphology and associated fungi in Picea abies stands on peat soils.
    Gaitnieks T; Klavina D; Muiznieks I; Pennanen T; Velmala S; Vasaitis R; Menkis A
    Mycorrhiza; 2016 Jul; 26(5):465-73. PubMed ID: 26861482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitrogen absorption efficiency and mechanism in Arbuscular mycorrhizal fungi - Canna indica symbiosis.
    Fu D; Rui Y; Zevenbergen C; Singh RP
    Chemosphere; 2021 Nov; 282():130708. PubMed ID: 34090002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions.
    Birhane E; Sterck FJ; Fetene M; Bongers F; Kuyper TW
    Oecologia; 2012 Aug; 169(4):895-904. PubMed ID: 22286084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth of conifer seedlings on organic and inorganic nitrogen sources.
    Ohlund J; Näsholm T
    Tree Physiol; 2001 Dec; 21(18):1319-26. PubMed ID: 11731342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasticity in nitrogen uptake among plant species with contrasting nutrient acquisition strategies in a tropical forest.
    Andersen KM; Mayor JR; Turner BL
    Ecology; 2017 May; 98(5):1388-1398. PubMed ID: 28263365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.
    Liu B; Li H; Zhu B; Koide RT; Eissenstat DM; Guo D
    New Phytol; 2015 Oct; 208(1):125-36. PubMed ID: 25925733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers.
    Reininger V; Sieber TN
    PLoS One; 2012; 7(8):e42865. PubMed ID: 22900058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species.
    Liese R; Lübbe T; Albers NW; Meier IC
    Tree Physiol; 2018 Jan; 38(1):83-95. PubMed ID: 29126247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua.
    Constable JV; Bassirirad H; Lussenhop J; Zerihun A
    Tree Physiol; 2001 Feb; 21(2-3):83-91. PubMed ID: 11303652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vascular plant
    Michelsen A; Quarmby C; Sleep D; Jonasson S
    Oecologia; 1998 Jul; 115(3):406-418. PubMed ID: 28308434
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organic nitrogen uptake of Scots pine seedlings is independent of current carbohydrate supply.
    Gruffman L; Palmroth S; Näsholm T
    Tree Physiol; 2013 Jun; 33(6):590-600. PubMed ID: 23824240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi.
    Ford CR; Wurzburger N; Hendrick RL; Teskey RO
    Tree Physiol; 2007 Mar; 27(3):375-83. PubMed ID: 17241979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tripartite legume-rhizobia-mycorrhizae relationship is influenced by light and soil nitrogen in Neotropical canopy gaps.
    Ficano N; Porder S; McCulloch LA
    Ecology; 2021 Nov; 102(11):e03489. PubMed ID: 34292601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of earthworms and white-tailed deer on roots, arbuscular mycorrhizae, and forest seedling performance.
    Dobson A; Richardson J; Blossey B
    Ecology; 2020 Jan; 101(1):e02903. PubMed ID: 31563154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of growth medium, nutrients, water, and aeration on mycorrhization and biomass allocation of greenhouse-grown interior Douglas-fir seedlings.
    Kazantseva O; Bingham M; Simard SW; Berch SM
    Mycorrhiza; 2009 Nov; 20(1):51-66. PubMed ID: 19572155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.