These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 3453825)
41. Acute changes of myocardial norepinephrine and glycogen phosphorylase in ischemic and non-ischemic areas after coronary ligation in dogs. Sakai K; Abiko Y Jpn Circ J; 1981 Nov; 45(11):1250-5. PubMed ID: 7300006 [TBL] [Abstract][Full Text] [Related]
42. Inhibitory effect of trimetazidine on utilization of myocardial glycogen during coronary ligation in dogs. Sakai K; Fukushi Y; Abiko Y Pharmacology; 1986; 32(2):72-9. PubMed ID: 3952133 [TBL] [Abstract][Full Text] [Related]
43. Immediate no-flow ischemia decreases rat heart nonesterified fatty acid and increases acyl-CoA species concentrations. Maoz D; Lee HJ; Deutsch J; Rapoport SI; Bazinet RP Lipids; 2005 Nov; 40(11):1149-54. PubMed ID: 16459927 [TBL] [Abstract][Full Text] [Related]
44. Effects of nitroglycerin, dipyridamole and propranolol on myocardial pH and pO2 during regional ischemia in the dog heart. Shibano T; Abiko Y Arch Int Pharmacodyn Ther; 1983 Aug; 264(2):274-89. PubMed ID: 6416195 [TBL] [Abstract][Full Text] [Related]
45. Changes in regional myocardial metabolism during partial stenosis in the presence of coronary vasodilators. Gould KL; Kelley KO; Halter JB J Cardiovasc Pharmacol; 1981; 3(5):936-47. PubMed ID: 6168861 [TBL] [Abstract][Full Text] [Related]
46. Accumulation of arachidonate in triacylglycerols and unesterified fatty acids during ischemia and reflow in the isolated rat heart. Correlation with the loss of contractile function and the development of calcium overload. Burton KP; Buja LM; Sen A; Willerson JT; Chien KR Am J Pathol; 1986 Aug; 124(2):238-45. PubMed ID: 3090888 [TBL] [Abstract][Full Text] [Related]
47. Effect of increased levels of free fatty acids on the size of the ischaemic area. Pérez-Medina T; Udvary E; Szekeres L Cor Vasa; 1985; 27(1):87-91. PubMed ID: 3995996 [TBL] [Abstract][Full Text] [Related]
48. The relationships of high energy phosphates, tissue pH, and regional blood flow to diastolic distensibility in the ischemic dog myocardium. Momomura S; Ingwall JS; Parker JA; Sahagian P; Ferguson JJ; Grossman W Circ Res; 1985 Dec; 57(6):822-35. PubMed ID: 4064257 [TBL] [Abstract][Full Text] [Related]
49. Inhibitory effects of the D(-)isomer of 3-hydroxybutyrate on cardiac non-esterified fatty acid uptake and oxygen demand induced by norepinephrine in the intact dog. Lammerant J; Huynh-Thu T; Kolanowski J J Mol Cell Cardiol; 1985 Apr; 17(4):421-33. PubMed ID: 3894678 [TBL] [Abstract][Full Text] [Related]
50. Pronounced accumulation of metoprolol in ischemic myocardium after coronary venous retroinfusion. Ryden L; Tadokoro H; Sjoquist PO; Kar S; Ervik M; Corday E J Cardiovasc Pharmacol; 1990 Jan; 15(1):22-8. PubMed ID: 1688978 [TBL] [Abstract][Full Text] [Related]
51. Attenuation by carbocromen of cardiac metabolism alterations due to ischemia. Andrieu JL; Ollagnier M; Lièvre M; Hugueny I; Tédone R; Faucon G Experientia; 1979 Jul; 35(7):892-3. PubMed ID: 477845 [TBL] [Abstract][Full Text] [Related]
52. The effects of hyaluronidase on coronary blood flow following coronary artery occlusion in the dog. Askenazi J; Hillis LD; Diaz PE; Davis MA; Braunwald E; Maroko PR Circ Res; 1977 Jun; 40(6):566-71. PubMed ID: 870237 [TBL] [Abstract][Full Text] [Related]
53. Effects of right and left ventricular pressure overload on left ventricular function and metabolism in dogs. Ueda A; Su KM; Okabe F; Sada T; Ito T; Matsumoto S; Ito Y Adv Myocardiol; 1980; 2():239-47. PubMed ID: 7423041 [TBL] [Abstract][Full Text] [Related]
54. Effects of propranolol on regional O2 supply and O2 consumption in reperfused dog myocardium. Joselevitz-Goldman J; Upsher ME; Weiss HR J Pharmacol Exp Ther; 1987 Jul; 242(1):102-7. PubMed ID: 3612518 [TBL] [Abstract][Full Text] [Related]
55. Effects of coronary artery disease and percutaneous intervention on the cardiac metabolism of nonesterified fatty acids and insulin: Implications of diabetes mellitus. Jaumdally RJ; Lip GY; Patel JV; MacFadyen RJ; Varma C J Intern Med; 2009 Jun; 265(6):689-97. PubMed ID: 19226374 [TBL] [Abstract][Full Text] [Related]
56. Serum-myocardium gradients of non-esterified fatty acids in dog, rat and man. Van der Vusse GJ; Roemen TH; Flameng W; Reneman RS Biochim Biophys Acta; 1983 Aug; 752(3):361-70. PubMed ID: 6871233 [TBL] [Abstract][Full Text] [Related]
57. 6-oxy-(acetyl piperazine) fluorescein as a new fluorescent labeling reagent for free fatty acids in serum using high-performance liquid chromatography. Du XL; Zhang HS; Guo XF; Deng YH; Wang H J Chromatogr A; 2007 Oct; 1169(1-2):77-85. PubMed ID: 17869260 [TBL] [Abstract][Full Text] [Related]
58. The significance of the late fall in myocardial PCO2 and its relationship to myocardial pH after regional coronary occlusion in the dog. Khuri SF; Kloner RA; Karaffa SA; Marston W; Taylor AD; Lai NC; Tow DE; Barsamian EM Circ Res; 1985 Apr; 56(4):537-47. PubMed ID: 3919963 [TBL] [Abstract][Full Text] [Related]
59. Canine myocardial creatine kinase isoenzymes after chronic coronary artery occlusion. Sharkey SW; Murakami MM; Smith SA; Apple FS Circulation; 1991 Jul; 84(1):333-40. PubMed ID: 2060103 [TBL] [Abstract][Full Text] [Related]
60. Incomplete fatty acid oxidation by ischemic heart: beta-hydroxy fatty acid production. Moore KH; Radloff JF; Hull FE; Sweeley CC Am J Physiol; 1980 Aug; 239(2):H257-65. PubMed ID: 7406063 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]