These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 34538999)

  • 1. Transitioning from electrodialysis to reverse electrodialysis stack design for energy generation from high concentration salinity gradients.
    Hulme AM; Davey CJ; Tyrrel S; Pidou M; McAdam EJ
    Energy Convers Manag; 2021 Sep; 244():None. PubMed ID: 34538999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scale-up of reverse electrodialysis for energy generation from high concentration salinity gradients.
    Hulme AM; Davey CJ; Tyrrel S; Pidou M; McAdam EJ
    J Memb Sci; 2021 Jun; 627():119245. PubMed ID: 34083864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.
    Yip NY; Vermaas DA; Nijmeijer K; Elimelech M
    Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlations between Properties of Pore-Filling Ion Exchange Membranes and Performance of a Reverse Electrodialysis Stack for High Power Density.
    Kim H; Choi J; Jeong N; Jung YG; Kim H; Kim D; Yang S
    Membranes (Basel); 2021 Aug; 11(8):. PubMed ID: 34436372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Breathing Cell: Cyclic Intermembrane Distance Variation in Reverse Electrodialysis.
    Moreno J; Slouwerhof E; Vermaas DA; Saakes M; Nijmeijer K
    Environ Sci Technol; 2016 Oct; 50(20):11386-11393. PubMed ID: 27643612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant.
    Veerman J; Saakes M; Metz SJ; Harmsen GJ
    Environ Sci Technol; 2010 Dec; 44(23):9207-12. PubMed ID: 20964356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upscaling Reverse Electrodialysis.
    Moreno J; Grasman S; van Engelen R; Nijmeijer K
    Environ Sci Technol; 2018 Sep; 52(18):10856-10863. PubMed ID: 30102521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power Generation Performance of Reverse Electrodialysis (RED) Using Various Ion Exchange Membranes and Power Output Prediction for a Large RED Stack.
    Sugimoto Y; Ujike R; Higa M; Kakihana Y; Higa M
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced energy recovery using a cascaded reverse electrodialysis stack for salinity gradient power generation.
    Nam JY; Jwa E; Eom H; Kim H; Hwang K; Jeong N
    Water Res; 2021 Jul; 200():117255. PubMed ID: 34062402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating Reverse-Electrodialysis Stacks with Flow Batteries for Improved Energy Recovery from Salinity Gradients and Energy Storage.
    Zhu X; Kim T; Rahimi M; Gorski CA; Logan BE
    ChemSusChem; 2017 Feb; 10(4):797-803. PubMed ID: 27911491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doubled power density from salinity gradients at reduced intermembrane distance.
    Vermaas DA; Saakes M; Nijmeijer K
    Environ Sci Technol; 2011 Aug; 45(16):7089-95. PubMed ID: 21736348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divalent Cation Removal by Donnan Dialysis for Improved Reverse Electrodialysis.
    Rijnaarts T; Shenkute NT; Wood JA; de Vos WM; Nijmeijer K
    ACS Sustain Chem Eng; 2018 May; 6(5):7035-7041. PubMed ID: 29755894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Ionic Conductivity and Power Generation Using Ion-Exchange Resin Beads in a Reverse-Electrodialysis Stack.
    Zhang B; Gao H; Chen Y
    Environ Sci Technol; 2015 Dec; 49(24):14717-24. PubMed ID: 26560232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active Control of Irreversible Faradic Reactions to Enhance the Performance of Reverse Electrodialysis for Energy Production from Salinity Gradients.
    Oh Y; Han JH; Kim H; Jeong N; Vermaas DA; Park JS; Chae S
    Environ Sci Technol; 2021 Aug; 55(16):11388-11396. PubMed ID: 34310128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Co-Existing Ions on Salinity Gradient Power Generation by Reverse Electrodialysis Using Different Ion Exchange Membrane Pairs.
    Kaya TZ; Altıok E; Güler E; Kabay N
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Custom-Made Ion Exchange Membranes at Laboratory Scale for Reverse Electrodialysis.
    Villafaña-López L; Reyes-Valadez DM; González-Vargas OA; Suárez-Toriello VA; Jaime-Ferrer JS
    Membranes (Basel); 2019 Nov; 9(11):. PubMed ID: 31689967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells.
    Cusick RD; Kim Y; Logan BE
    Science; 2012 Mar; 335(6075):1474-7. PubMed ID: 22383807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO
    Moreno J; de Hart N; Saakes M; Nijmeijer K
    Water Res; 2017 Nov; 125():23-31. PubMed ID: 28834766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Managing power dissipation in closed-loop reverse electrodialysis to maximise energy recovery during thermal-to-electric conversion.
    Hulme AM; Davey CJ; Parker A; Williams L; Tyrrel S; Jiang Y; Pidou M; McAdam EJ
    Desalination; 2020 Dec; 496():114711. PubMed ID: 33335330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.