BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34539432)

  • 1. The Effects of Repetitive Use and Pathological Remodeling on Channelrhodopsin Function in Cardiomyocytes.
    Ördög B; Teplenin A; De Coster T; Bart CI; Dekker SO; Zhang J; Ypey DL; de Vries AAF; Pijnappels DA
    Front Physiol; 2021; 12():710020. PubMed ID: 34539432
    [No Abstract]   [Full Text] [Related]  

  • 2. Optogenetic excitation of neurons with channelrhodopsins: light instrumentation, expression systems, and channelrhodopsin variants.
    Lin JY
    Prog Brain Res; 2012; 196():29-47. PubMed ID: 22341319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management.
    Nyns ECA; Kip A; Bart CI; Plomp JJ; Zeppenfeld K; Schalij MJ; de Vries AAF; Pijnappels DA
    Eur Heart J; 2017 Jul; 38(27):2132-2136. PubMed ID: 28011703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac Electrophysiological Effects of Light-Activated Chloride Channels.
    Kopton RA; Baillie JS; Rafferty SA; Moss R; Zgierski-Johnston CM; Prykhozhij SV; Stoyek MR; Smith FM; Kohl P; Quinn TA; Schneider-Warme F
    Front Physiol; 2018; 9():1806. PubMed ID: 30618818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes.
    Bingen BO; Engels MC; Schalij MJ; Jangsangthong W; Neshati Z; Feola I; Ypey DL; Askar SF; Panfilov AV; Pijnappels DA; de Vries AA
    Cardiovasc Res; 2014 Oct; 104(1):194-205. PubMed ID: 25082848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A user's guide to channelrhodopsin variants: features, limitations and future developments.
    Lin JY
    Exp Physiol; 2011 Jan; 96(1):19-25. PubMed ID: 20621963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic Stimulation Using Anion Channelrhodopsin (GtACR1) Facilitates Termination of Reentrant Arrhythmias With Low Light Energy Requirements: A Computational Study.
    Ochs AR; Karathanos TV; Trayanova NA; Boyle PM
    Front Physiol; 2021; 12():718622. PubMed ID: 34526912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic Control of Mouse Outer Hair Cells.
    Wu T; Ramamoorthy S; Wilson T; Chen F; Porsov E; Subhash H; Foster S; Zhang Y; Omelchenko I; Bateschell M; Wang L; Brigande JV; Jiang ZG; Mao T; Nuttall AL
    Biophys J; 2016 Jan; 110(2):493-502. PubMed ID: 26789771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetically mediated large volume suppression and synchronized excitation of human ventricular cardiomyocytes.
    Pyari G; Bansal H; Roy S
    Pflugers Arch; 2023 Dec; 475(12):1479-1503. PubMed ID: 37415050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation.
    Lin JY; Knutsen PM; Muller A; Kleinfeld D; Tsien RY
    Nat Neurosci; 2013 Oct; 16(10):1499-508. PubMed ID: 23995068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multidimensional screening yields channelrhodopsin variants having improved photocurrent and order-of-magnitude reductions in calcium and proton currents.
    Cho YK; Park D; Yang A; Chen F; Chuong AS; Klapoetke NC; Boyden ES
    J Biol Chem; 2019 Mar; 294(11):3806-3821. PubMed ID: 30610117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Platymonas subcordiformis Channelrhodopsin-2 (PsChR2) Function: II. RELATIONSHIP OF THE PHOTOCHEMICAL REACTION CYCLE TO CHANNEL CURRENTS.
    Szundi I; Bogomolni R; Kliger DS
    J Biol Chem; 2015 Jul; 290(27):16585-94. PubMed ID: 25971978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-Function Relationship of Channelrhodopsins.
    Kato HE
    Adv Exp Med Biol; 2021; 1293():35-53. PubMed ID: 33398806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic manipulation of anatomical re-entry by light-guided generation of a reversible local conduction block.
    Watanabe M; Feola I; Majumder R; Jangsangthong W; Teplenin AS; Ypey DL; Schalij MJ; Zeppenfeld K; de Vries AA; Pijnappels DA
    Cardiovasc Res; 2017 Mar; 113(3):354-366. PubMed ID: 28395022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selecting Channelrhodopsin Constructs for Optimal Visual Restoration in Differing Light Conditions.
    Ganjawala TH; Pan ZH
    Methods Mol Biol; 2021; 2191():189-199. PubMed ID: 32865746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics.
    Bedbrook CN; Yang KK; Robinson JE; Mackey ED; Gradinaru V; Arnold FH
    Nat Methods; 2019 Nov; 16(11):1176-1184. PubMed ID: 31611694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevention of hypertrophy by overexpression of Kv4.2 in cultured neonatal cardiomyocytes.
    Zobel C; Kassiri Z; Nguyen TT; Meng Y; Backx PH
    Circulation; 2002 Oct; 106(18):2385-91. PubMed ID: 12403671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adeno-Associated Virus Mediated Gene Delivery: Implications for Scalable
    Ambrosi CM; Sadananda G; Han JL; Entcheva E
    Front Physiol; 2019; 10():168. PubMed ID: 30890951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a Natural Green Light Absorbing Chloride Conducting Channelrhodopsin from Proteomonas sulcata.
    Wietek J; Broser M; Krause BS; Hegemann P
    J Biol Chem; 2016 Feb; 291(8):4121-7. PubMed ID: 26740624
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.