BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 34539582)

  • 1. The Circadian Clock Is Sustained in the Thyroid Gland of VIP Receptor 2 Deficient Mice.
    Georg B; Fahrenkrug J; Jørgensen HL; Hannibal J
    Front Endocrinol (Lausanne); 2021; 12():737581. PubMed ID: 34539582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered rhythm of adrenal clock genes, StAR and serum corticosterone in VIP receptor 2-deficient mice.
    Fahrenkrug J; Georg B; Hannibal J; Jørgensen HL
    J Mol Neurosci; 2012 Nov; 48(3):584-96. PubMed ID: 22622901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal expression pattern of PERIOD 1 and PERIOD 2 in the mouse SCN is dependent on VIP receptor 2 signaling.
    Hannibal J; Norn THB; Georg B; Fahrenkrug J
    Eur J Neurosci; 2019 Oct; 50(7):3115-3132. PubMed ID: 31211910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice.
    Hannibal J; Hsiung HM; Fahrenkrug J
    Am J Physiol Regul Integr Comp Physiol; 2011 Mar; 300(3):R519-30. PubMed ID: 21178124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of light and the circadian clock in the rhythmic oscillation of intraocular pressure: Studies in VPAC2 receptor and PACAP deficient mice.
    Fahrenkrug J; Georg B; Hannibal J; Jørgensen HL
    Exp Eye Res; 2018 Apr; 169():134-140. PubMed ID: 29428294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Cell-Autonomous Clock of VIP Receptor VPAC2 Cells Regulates Period and Coherence of Circadian Behavior.
    Hamnett R; Chesham JE; Maywood ES; Hastings MH
    J Neurosci; 2021 Jan; 41(3):502-512. PubMed ID: 33234609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constant light enhances synchrony among circadian clock cells and promotes behavioral rhythms in VPAC2-signaling deficient mice.
    Hughes AT; Croft CL; Samuels RE; Myung J; Takumi T; Piggins HD
    Sci Rep; 2015 Sep; 5():14044. PubMed ID: 26370467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian PER2::LUC rhythms in the olfactory bulb of freely moving mice depend on the suprachiasmatic nucleus but not on behaviour rhythms.
    Ono D; Honma S; Honma K
    Eur J Neurosci; 2015 Dec; 42(12):3128-37. PubMed ID: 26489367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the VPAC2-activated cAMP/PKA signaling pathway: from receptor to circadian clock gene induction.
    Hao H; Zak DE; Sauter T; Schwaber J; Ogunnaike BA
    Biophys J; 2006 Mar; 90(5):1560-71. PubMed ID: 16339878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro.
    Cutler DJ; Haraura M; Reed HE; Shen S; Sheward WJ; Morrison CF; Marston HM; Harmar AJ; Piggins HD
    Eur J Neurosci; 2003 Jan; 17(2):197-204. PubMed ID: 12542655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An essential role for peptidergic signalling in the control of circadian rhythms in the suprachiasmatic nuclei.
    Harmar AJ
    J Neuroendocrinol; 2003 Apr; 15(4):335-8. PubMed ID: 12622830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. REV-ERBα and the clock gene machinery in mouse peripheral tissues: a possible role as a synchronizing hinge.
    Mazzoccoli G; Cai Y; Liu S; Francavilla M; Giuliani F; Piepoli A; Pazienza V; Vinciguerra M; Yamamoto T; Takumi T
    J Biol Regul Homeost Agents; 2012; 26(2):265-76. PubMed ID: 22824754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PAC1- and VPAC2 receptors in light regulated behavior and physiology: Studies in single and double mutant mice.
    Hannibal J; Georg B; Fahrenkrug J
    PLoS One; 2017; 12(11):e0188166. PubMed ID: 29155851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic AMP signaling control of action potential firing rate and molecular circadian pacemaking in the suprachiasmatic nucleus.
    Atkinson SE; Maywood ES; Chesham JE; Wozny C; Colwell CS; Hastings MH; Williams SR
    J Biol Rhythms; 2011 Jun; 26(3):210-20. PubMed ID: 21628548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic rhythm abnormalities in mice lacking VIP-VPAC2 signaling.
    Bechtold DA; Brown TM; Luckman SM; Piggins HD
    Am J Physiol Regul Integr Comp Physiol; 2008 Feb; 294(2):R344-51. PubMed ID: 18032467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus.
    Carmona-Alcocer V; Abel JH; Sun TC; Petzold LR; Doyle FJ; Simms CL; Herzog ED
    J Neurosci; 2018 Feb; 38(6):1326-1334. PubMed ID: 29054877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential contributions of intra-cellular and inter-cellular mechanisms to the spatial and temporal architecture of the suprachiasmatic nucleus circadian circuitry in wild-type, cryptochrome-null and vasoactive intestinal peptide receptor 2-null mutant mice.
    Pauls S; Foley NC; Foley DK; LeSauter J; Hastings MH; Maywood ES; Silver R
    Eur J Neurosci; 2014 Aug; 40(3):2528-40. PubMed ID: 24891292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythms and different photoresponses of Clock gene transcription in the rat suprachiasmatic nucleus and pineal gland.
    Wang GQ; Fu CL; Li JX; Du YZ; Tong J
    Sheng Li Xue Bao; 2006 Aug; 58(4):359-64. PubMed ID: 16906337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex differences in circadian timing systems: implications for disease.
    Bailey M; Silver R
    Front Neuroendocrinol; 2014 Jan; 35(1):111-39. PubMed ID: 24287074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disrupted light-dark cycle abolishes circadian expression of peripheral clock genes without inducing behavioral arrhythmicity in mice.
    Oishi K; Higo-Yamamoto S; Yamamoto S; Yasumoto Y
    Biochem Biophys Res Commun; 2015 Mar; 458(2):256-61. PubMed ID: 25645021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.