These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34539708)

  • 1. High-Throughput Phenotyping and Random Regression Models Reveal Temporal Genetic Control of Soybean Biomass Production.
    Freitas Moreira F; Rojas de Oliveira H; Lopez MA; Abughali BJ; Gomes G; Cherkauer KA; Brito LF; Rainey KM
    Front Plant Sci; 2021; 12():715983. PubMed ID: 34539708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating Biomass and Canopy Height With LiDAR for Field Crop Breeding.
    Walter JDC; Edwards J; McDonald G; Kuchel H
    Front Plant Sci; 2019; 10():1145. PubMed ID: 31611889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing estimation of cover crop biomass using field-based high-throughput phenotyping and machine learning models.
    Bai G; Koehler-Cole K; Scoby D; Thapa VR; Basche A; Ge Y
    Front Plant Sci; 2023; 14():1277672. PubMed ID: 38259938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-series multispectral imaging in soybean for improving biomass and genomic prediction accuracy.
    Sakurai K; Toda Y; Kajiya-Kanegae H; Ohmori Y; Yamasaki Y; Takahashi H; Takanashi H; Tsuda M; Tsujimoto H; Kaga A; Nakazono M; Fujiwara T; Iwata H
    Plant Genome; 2022 Dec; 15(4):e20244. PubMed ID: 35996857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-trait random regression models increase genomic prediction accuracy for a temporal physiological trait derived from high-throughput phenotyping.
    Baba T; Momen M; Campbell MT; Walia H; Morota G
    PLoS One; 2020; 15(2):e0228118. PubMed ID: 32012182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological breeding for yield improvement in soybean: solar radiation interception-conversion, and harvest index.
    Lopez MA; Moreira FF; Hearst A; Cherkauer K; Rainey KM
    Theor Appl Genet; 2022 May; 135(5):1477-1491. PubMed ID: 35275253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Invited review: Advances and applications of random regression models: From quantitative genetics to genomics.
    Oliveira HR; Brito LF; Lourenco DAL; Silva FF; Jamrozik J; Schaeffer LR; Schenkel FS
    J Dairy Sci; 2019 Sep; 102(9):7664-7683. PubMed ID: 31255270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ground-Based LiDAR Improves Phenotypic Repeatability of Above-Ground Biomass and Crop Growth Rate in Wheat.
    Deery DM; Rebetzke GJ; Jimenez-Berni JA; Condon AG; Smith DJ; Bechaz KM; Bovill WD
    Plant Phenomics; 2020; 2020():8329798. PubMed ID: 33313565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic prediction models for traits differing in heritability for soybean, rice, and maize.
    Kaler AS; Purcell LC; Beissinger T; Gillman JD
    BMC Plant Biol; 2022 Feb; 22(1):87. PubMed ID: 35219296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing random regression models for genomic prediction of a longitudinal trait derived from high-throughput phenotyping.
    Campbell M; Walia H; Morota G
    Plant Direct; 2018 Sep; 2(9):e00080. PubMed ID: 31245746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput characterization, correlation, and mapping of leaf photosynthetic and functional traits in the soybean (Glycine max) nested association mapping population.
    Montes CM; Fox C; Sanz-Sáez Á; Serbin SP; Kumagai E; Krause MD; Xavier A; Specht JE; Beavis WD; Bernacchi CJ; Diers BW; Ainsworth EA
    Genetics; 2022 May; 221(2):. PubMed ID: 35451475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Longitudinal Traits Derived from High-Throughput Phenomics in Contrasting Environments Using Genomic Legendre Polynomials and B-Splines.
    Momen M; Campbell MT; Walia H; Morota G
    G3 (Bethesda); 2019 Oct; 9(10):3369-3380. PubMed ID: 31427454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize.
    Wang W; Guo W; Le L; Yu J; Wu Y; Li D; Wang Y; Wang H; Lu X; Qiao H; Gu X; Tian J; Zhang C; Pu L
    Mol Plant; 2023 Feb; 16(2):354-373. PubMed ID: 36447436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging genomics and temporal high-throughput phenotyping to enhance association mapping and yield prediction in sesame.
    Sabag I; Bi Y; Sahoo MM; Herrmann I; Morota G; Peleg Z
    Plant Genome; 2024 Jun; ():e20481. PubMed ID: 38926134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer vision and machine learning enabled soybean root phenotyping pipeline.
    Falk KG; Jubery TZ; Mirnezami SV; Parmley KA; Sarkar S; Singh A; Ganapathysubramanian B; Singh AK
    Plant Methods; 2020; 16():5. PubMed ID: 31993072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic Variation and Genetic Architecture for Photosynthesis and Water Use Efficiency in Soybean (
    Lopez MA; Xavier A; Rainey KM
    Front Plant Sci; 2019; 10():680. PubMed ID: 31178887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotyping by sequencing for genomic prediction in a soybean breeding population.
    Jarquín D; Kocak K; Posadas L; Hyma K; Jedlicka J; Graef G; Lorenz A
    BMC Genomics; 2014 Aug; 15(1):740. PubMed ID: 25174348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenomics based prediction of plant biomass and leaf area in wheat using machine learning approaches.
    Singh B; Kumar S; Elangovan A; Vasht D; Arya S; Duc NT; Swami P; Pawar GS; Raju D; Krishna H; Sathee L; Dalal M; Sahoo RN; Chinnusamy V
    Front Plant Sci; 2023; 14():1214801. PubMed ID: 37448870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of potato above-ground biomass based on unmanned aerial vehicle red-green-blue images with different texture features and crop height.
    Liu Y; Feng H; Yue J; Jin X; Li Z; Yang G
    Front Plant Sci; 2022; 13():938216. PubMed ID: 36092445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic studies of milk-related traits in water buffalo (Bubalus bubalis) based on single-step genomic best linear unbiased prediction and random regression models.
    Lázaro SF; Tonhati H; Oliveira HR; Silva AA; Nascimento AV; Santos DJA; Stefani G; Brito LF
    J Dairy Sci; 2021 May; 104(5):5768-5793. PubMed ID: 33685677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.