These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34539710)

  • 41. Stomatal lock-open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by Blumeria graminis.
    Prats E; Gay AP; Mur LA; Thomas BJ; Carver TL
    J Exp Bot; 2006; 57(10):2211-26. PubMed ID: 16793847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automatic cell identification and counting of leaf epidermis for plant phenotyping.
    Mele G; Gargiulo L
    MethodsX; 2020; 7():100860. PubMed ID: 32274336
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales.
    Rudall PJ; Bateman RM
    Biol Rev Camb Philos Soc; 2019 Jun; 94(3):1179-1194. PubMed ID: 30714286
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Changes in stomatal frequency and size during elongation of Tsuga heterophylla needles.
    Kouwenberg LL; Kürschner WM; Visscher H
    Ann Bot; 2004 Oct; 94(4):561-9. PubMed ID: 15321836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Guard cells of Commelina communis L. do not respond metabolically to osmotic stress in isolated epidermis: Implications for stomatal responses to drought and humidity.
    Grantz DA; Schwartz A
    Planta; 1988 May; 174(2):166-73. PubMed ID: 24221472
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A generalised approach for high-throughput instance segmentation of stomata in microscope images.
    Jayakody H; Petrie P; Boer HJ; Whitty M
    Plant Methods; 2021 Mar; 17(1):27. PubMed ID: 33750422
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optical topometry and machine learning to rapidly phenotype stomatal patterning traits for maize QTL mapping.
    Xie J; Fernandes SB; Mayfield-Jones D; Erice G; Choi M; E Lipka A; Leakey ADB
    Plant Physiol; 2021 Nov; 187(3):1462-1480. PubMed ID: 34618057
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automated stomata detection in oil palm with convolutional neural network.
    Kwong QB; Wong YC; Lee PL; Sahaini MS; Kon YT; Kulaveerasingam H; Appleton DR
    Sci Rep; 2021 Jul; 11(1):15210. PubMed ID: 34312480
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automatic segmentation and measurement methods of living stomata of plants based on the CV model.
    Li K; Huang J; Song W; Wang J; Lv S; Wang X
    Plant Methods; 2019; 15():67. PubMed ID: 31303890
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Taxonomic implication of leaf epidermal anatomy of selected taxa of Scrophulariaceae from Pakistan.
    Ullah F; Ayaz A; Saqib S; Parmar G; Bahadur S; Zaman W
    Microsc Res Tech; 2021 Mar; 84(3):521-530. PubMed ID: 32990330
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency.
    Papanatsiou M; Amtmann A; Blatt MR
    J Exp Bot; 2017 Apr; 68(9):2309-2315. PubMed ID: 28369641
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir.
    Papanatsiou M; Amtmann A; Blatt MR
    Plant Physiol; 2016 Sep; 172(1):254-63. PubMed ID: 27406168
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Automatic wheat ear counting using machine learning based on RGB UAV imagery.
    Fernandez-Gallego JA; Lootens P; Borra-Serrano I; Derycke V; Haesaert G; Roldán-Ruiz I; Araus JL; Kefauver SC
    Plant J; 2020 Aug; 103(4):1603-1613. PubMed ID: 32369641
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stomatal clustering in
    Tsai MY; Kuan C; Guo ZL; Yang HA; Chung KF; Ho CK
    Plant Environ Interact; 2022 Aug; 3(4):141-154. PubMed ID: 37283607
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Rapid and Simple Method for Microscopy-Based Stomata Analyses.
    Eisele JF; Fäßler F; Bürgel PF; Chaban C
    PLoS One; 2016; 11(10):e0164576. PubMed ID: 27732636
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stomatal Development and Gene Expression in Rice Florets.
    Bertolino LT; Caine RS; Zoulias N; Yin X; Chater CCC; Biswal A; Quick WP; Gray JE
    Plant Cell Physiol; 2022 Nov; 63(11):1679-1694. PubMed ID: 35993973
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Accurate measurement of magnetic resonance parkinsonism index by a fully automatic and deep learning quantification pipeline.
    Sun F; Lyu J; Jian S; Qin Y; Tang X
    Eur Radiol; 2023 Dec; 33(12):8844-8853. PubMed ID: 37480547
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessing stomatal response to live bacterial cells using whole leaf imaging.
    Chitrakar R; Melotto M
    J Vis Exp; 2010 Oct; (44):. PubMed ID: 20972403
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MFCIS: an automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology.
    Zhang Y; Peng J; Yuan X; Zhang L; Zhu D; Hong P; Wang J; Liu Q; Liu W
    Hortic Res; 2021 Aug; 8(1):172. PubMed ID: 34333519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.