These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34539717)

  • 1. The Arbuscular Mycorrhizal Fungus
    Cartabia A; Tsiokanos E; Tsafantakis N; Lalaymia I; Termentzi A; Miguel M; Fokialakis N; Declerck S
    Front Plant Sci; 2021; 12():724352. PubMed ID: 34539717
    [No Abstract]   [Full Text] [Related]  

  • 2. The Metabolic Profile of
    Tsiokanos E; Cartabia A; Tsafantakis N; Lalaymia I; Termentzi A; Miguel M; Declerck S; Fokialakis N
    Metabolites; 2022 Jun; 12(7):. PubMed ID: 35888697
    [No Abstract]   [Full Text] [Related]  

  • 3. Arbuscular mycorrhizal fungi impact the production of alkannin/shikonin and their derivatives in
    Zhao Y; Cartabia A; Garcés-Ruiz M; Herent MF; Quetin-Leclercq J; Ortiz S; Declerck S; Lalaymia I
    Front Microbiol; 2023; 14():1216029. PubMed ID: 37637105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833 increases the phosphorus uptake and biomass of Medicago truncatula, a benzo[a]pyrene-tolerant plant species.
    Calonne-Salmon M; Plouznikoff K; Declerck S
    Mycorrhiza; 2018 Nov; 28(8):761-771. PubMed ID: 30121903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of increasing chromium (VI) concentrations on growth, phosphorus and chromium uptake of maize plants associated to the mycorrhizal fungus
    María Lourdes GC; Stéphane D; Maryline CS
    Heliyon; 2021 Jan; 7(1):e05891. PubMed ID: 33474511
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Le Pioufle O; Ganoudi M; Calonne-Salmon M; Ben Dhaou F; Declerck S
    Front Plant Sci; 2019; 10():897. PubMed ID: 31379895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots of Ocimum basilicum in an in vitro co-culture system.
    Srivastava S; Conlan XA; Cahill DM; Adholeya A
    Mycorrhiza; 2016 Nov; 26(8):919-930. PubMed ID: 27485855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of Short-Term Phosphorus Uptake by Intact Mycorrhizal and Non-mycorrhizal Maize Plants Grown in a Circulatory Semi-Hydroponic Cultivation System.
    Garcés-Ruiz M; Calonne-Salmon M; Plouznikoff K; Misson C; Navarrete-Mier M; Cranenbrouck S; Declerck S
    Front Plant Sci; 2017; 8():1471. PubMed ID: 28890723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMF species do matter:
    Deja-Sikora E; Werner K; Hrynkiewicz K
    Front Microbiol; 2023; 14():1127278. PubMed ID: 37138600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing Water Availability Impacts the Development of the Arbuscular Mycorrhizal Fungus
    Le Pioufle O; Declerck S
    Front Microbiol; 2018; 9():1254. PubMed ID: 29942294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased Silicon Acquisition in Bananas Colonized by
    Gbongue LR; Lalaymia I; Zeze A; Delvaux B; Declerck S
    Front Plant Sci; 2018; 9():1977. PubMed ID: 30687370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Rhizophagus irregularis MUCL 41833 on the reproduction of Radopholus similis in banana plantlets grown under in vitro culture conditions.
    Koffi MC; Vos C; Draye X; Declerck S
    Mycorrhiza; 2013 May; 23(4):279-88. PubMed ID: 23111398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic transition in mycorrhizal tomato roots.
    Rivero J; Gamir J; Aroca R; Pozo MJ; Flors V
    Front Microbiol; 2015; 6():598. PubMed ID: 26157423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency.
    Luthfiana N; Inamura N; Tantriani ; Sato T; Saito K; Oikawa A; Chen W; Tawaraya K
    Mycorrhiza; 2021 May; 31(3):403-412. PubMed ID: 33459866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of fungal endophytes and arbuscular mycorrhizal fungi on growth of Echium vulgare and alkannin/shikonin and their derivatives production in roots.
    Zhao Y; Rodić N; Liaskos M; Assimopoulou AN; Lalaymia I; Declerck S
    Fungal Biol; 2024 Feb; 128(1):1607-1615. PubMed ID: 38341266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress - A Meta-Analysis.
    Chandrasekaran M; Kim K; Krishnamoorthy R; Walitang D; Sundaram S; Joe MM; Selvakumar G; Hu S; Oh SH; Sa T
    Front Microbiol; 2016; 7():1246. PubMed ID: 27563299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Succession of endophytic fungi and arbuscular mycorrhizal fungi associated with the growth of plant and their correlation with secondary metabolites in the roots of plants.
    Dang H; Zhang T; Wang Z; Li G; Zhao W; Lv X; Zhuang L
    BMC Plant Biol; 2021 Apr; 21(1):165. PubMed ID: 33820543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana.
    Veiga RS; Faccio A; Genre A; Pieterse CM; Bonfante P; van der Heijden MG
    Plant Cell Environ; 2013 Nov; 36(11):1926-37. PubMed ID: 23527688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An
    Giachero ML; Marquez N; Gallou A; Luna CM; Declerck S; Ducasse DA
    Front Plant Sci; 2017; 8():1033. PubMed ID: 28670321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The arbuscular mycorrhizal Rhizophagus irregularis activates storage lipid biosynthesis to cope with the benzo[a]pyrene oxidative stress.
    Calonne M; Fontaine J; Debiane D; Laruelle F; Grandmougin-Ferjani A; Lounès-Hadj Sahraoui A
    Phytochemistry; 2014 Jan; 97():30-7. PubMed ID: 24246754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.