These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34540355)

  • 1. Pitching single-focus confocal data analysis one photon at a time with Bayesian nonparametrics.
    Tavakoli M; Jazani S; Sgouralis I; Shafraz OM; Sivasankar S; Donaphon B; Levitus M; Pressé S
    Phys Rev X; 2020; 10(1):. PubMed ID: 34540355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alternative framework for fluorescence correlation spectroscopy.
    Jazani S; Sgouralis I; Shafraz OM; Levitus M; Sivasankar S; Pressé S
    Nat Commun; 2019 Aug; 10(1):3662. PubMed ID: 31413259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Molecule Reaction-Diffusion.
    Xu 徐伟青 LWQ; Jazani S; Kilic Z; Pressé S
    bioRxiv; 2023 Sep; ():. PubMed ID: 37732202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The photon counting histogram in fluorescence fluctuation spectroscopy.
    Chen Y; Müller JD; So PT; Gratton E
    Biophys J; 1999 Jul; 77(1):553-67. PubMed ID: 10388780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Photon-by-Photon Analysis of Time-Resolved Pulsed Excitation Data using Bayesian Nonparametrics.
    Tavakoli M; Jazani S; Sgouralis I; Heo W; Ishii K; Tahara T; Pressé S
    Cell Rep Phys Sci; 2020 Nov; 1(11):. PubMed ID: 34414380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffraction-Limited Molecular Cluster Quantification with Bayesian Nonparametrics.
    Bryan JS; Sgouralis I; Pressé S
    Nat Comput Sci; 2022 Feb; 2(2):102-111. PubMed ID: 35874114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy.
    Hess ST; Webb WW
    Biophys J; 2002 Oct; 83(4):2300-17. PubMed ID: 12324447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: application to simulated and in vitro data.
    Guo SM; He J; Monnier N; Sun G; Wohland T; Bathe M
    Anal Chem; 2012 May; 84(9):3880-8. PubMed ID: 22455375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting.
    Lamb DC; Müller BK; Bräuchle C
    Curr Pharm Biotechnol; 2005 Oct; 6(5):405-14. PubMed ID: 16248814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Counting and behavior of an individual fluorescent molecule without hydrodynamic flow, immobilization, or photon count statistics.
    Földes-Papp Z; Baumann G; Demel U; Tilz GP
    Curr Pharm Biotechnol; 2004 Apr; 5(2):163-72. PubMed ID: 15078150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence correlation spectroscopy for the detection and study of single molecules in biology.
    Medina MA; Schwille P
    Bioessays; 2002 Aug; 24(8):758-64. PubMed ID: 12210537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-photon smFRET: II. Application to continuous illumination.
    Saurabh A; Safar M; Fazel M; Sgouralis I; Pressé S
    Biophys Rep (N Y); 2023 Mar; 3(1):100087. PubMed ID: 36582656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new analysis method of single molecule fluorescence using series of photon arrival times: theory and experiment.
    Novikov E; Hofkens J; Cotlet M; Maus M; De Schryver FC; Boens N
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Sep; 57(11):2109-33. PubMed ID: 11603834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single Molecule Detection Technologies in Miniaturized High Throughput Screening: Fluorescence Correlation Spectroscopy.
    Moore KJ; Turconi S; Ashman S; Ruediger M; Haupts U; Emerick V; Pope AJ
    J Biomol Screen; 1999; 4(6):335-354. PubMed ID: 10838431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation.
    Schwille P; Haupts U; Maiti S; Webb WW
    Biophys J; 1999 Oct; 77(4):2251-65. PubMed ID: 10512844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single molecule force spectroscopy at high data acquisition: A Bayesian nonparametric analysis.
    Sgouralis I; Whitmore M; Lapidus L; Comstock MJ; Pressé S
    J Chem Phys; 2018 Mar; 148(12):123320. PubMed ID: 29604816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-photon smFRET. I: Theory and conceptual basis.
    Saurabh A; Fazel M; Safar M; Sgouralis I; Pressé S
    Biophys Rep (N Y); 2023 Mar; 3(1):100089. PubMed ID: 36582655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging diffusion in living cells using time-correlated single-photon counting.
    Roth CM; Heinlein PI; Heilemann M; Herten DP
    Anal Chem; 2007 Oct; 79(19):7340-5. PubMed ID: 17803281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel single molecule detection with a fully integrated single-photon 2x2 CMOS detector array.
    Gösch M; Serov A; Anhut T; Lasser T; Rochas A; Besse PA; Popovic RS; Blom H; Rigler R
    J Biomed Opt; 2004; 9(5):913-21. PubMed ID: 15447011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially Multiplexed Imaging: Fluorescence Correlation Spectroscopy for Efficient Measurement of Molecular Diffusion at Solid-Liquid Interfaces.
    Cooper JT; Harris JM
    Appl Spectrosc; 2016 Apr; 70(4):695-701. PubMed ID: 26887989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.