These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34540556)

  • 1. Concurrent production of glycyrrhetic acid 3-
    Gao B; Xiao Y; Zhang Q; Sun J; Zhang Z; Zhu D
    Bioresour Bioprocess; 2021; 8(1):88. PubMed ID: 34540556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification and characterization of a novel β-glucuronidase precisely converts glycyrrhizin to glycyrrhetinic acid 3-O-mono-β-D-glucuronide from plant endophytic Chaetomium globosum DX-THS3.
    Zhang Q; Gao B; Xiao Y; Yang H; Wang Y; Du L; Zhu D
    Int J Biol Macromol; 2020 Sep; 159():782-792. PubMed ID: 32416297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microparticle-enhanced
    Du L; Gao B; Liang J; Wang Y; Xiao Y; Zhu D
    3 Biotech; 2020 Mar; 10(3):100. PubMed ID: 32099741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel β-Glucuronidase from Talaromyces pinophilus Li-93 Precisely Hydrolyzes Glycyrrhizin into Glycyrrhetinic Acid 3-
    Xu Y; Feng X; Jia J; Chen X; Jiang T; Rasool A; Lv B; Qu L; Li C
    Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30054355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycyrrhetic Acid 3-O-Mono-β-d-glucuronide (GAMG): An Innovative High-Potency Sweetener with Improved Biological Activities.
    Guo L; Katiyo W; Lu L; Zhang X; Wang M; Yan J; Ma X; Yang R; Zou L; Zhao W
    Compr Rev Food Sci Food Saf; 2018 Jul; 17(4):905-919. PubMed ID: 33350117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition in the metabolism of glycyrrhizin with glycyrrhetic acid mono-glucuronide by mixed Eubacterium sp. GLH and Ruminococcus sp. PO1-3.
    Akao T
    Biol Pharm Bull; 2000 Feb; 23(2):149-54. PubMed ID: 10706376
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Huang Y; Jiang D; Ren G; Yin Y; Sun Y; Liu T; Liu C
    Front Bioeng Biotechnol; 2021; 9():709120. PubMed ID: 34888299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate.
    Tai WY; Tan JS; Lim V; Lee CK
    Biotechnol Prog; 2019 May; 35(3):e2781. PubMed ID: 30701709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O-glycosyltransferases from
    Xu K; Zhao YJ; Ahmad N; Wang JN; Lv B; Wang Y; Ge J; Li C
    Synth Syst Biotechnol; 2021 Sep; 6(3):173-179. PubMed ID: 34322606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of glycyrrhetyl mono-glucuronide to glycyrrhetic acid by glycyrrhetyl mono-glucuronide beta-D-glucuronidase of Eubacterium sp. GLH.
    Akao T
    Biol Pharm Bull; 1997 Dec; 20(12):1245-9. PubMed ID: 9448097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation.
    El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA
    BMC Biotechnol; 2015 May; 15():37. PubMed ID: 26018951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiology-Based Pharmacokinetic Study on 18β-Glycyrrhetic Acid Mono-Glucuronide (GAMG) Prior to Glycyrrhizin in Rats.
    Cao M; Zuo J; Yang JG; Wu C; Yang Y; Tang W; Zhu L
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing endophytic Penicillium oxalicum as a source of lignocellulolytic enzymes for enhanced hydrolysis of biorefinery relevant pretreated rice straw.
    Sharma G; Kaur B; Raheja Y; Kaur A; Singh V; Basotra N; Di Falco M; Tsang A; Chadha BS
    Bioprocess Biosyst Eng; 2024 Dec; 47(12):2055-2073. PubMed ID: 39249151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolysis of glycyrrhizin to 18 beta-glycyrrhetyl monoglucuronide by lysosomal beta-D-glucuronidase of animal livers.
    Akao T; Akao T; Hattori M; Kanaoka M; Yamamoto K; Namba T; Kobashi K
    Biochem Pharmacol; 1991 Mar 15-Apr 1; 41(6-7):1025-9. PubMed ID: 2009072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of enzymes involved in the metabolism of glycyrrhizin in various organs of rat.
    Akao T
    Biol Pharm Bull; 1998 Oct; 21(10):1036-44. PubMed ID: 9821806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate.
    Mrudula S; Murugammal R
    Braz J Microbiol; 2011 Jul; 42(3):1119-27. PubMed ID: 24031730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH on metabolism of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid monoglucuronide by collected human intestinal flora.
    Akao T
    Biol Pharm Bull; 2001 Oct; 24(10):1108-12. PubMed ID: 11642312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High expression level of antioxidants and pharmaceutical bioactivities of endophytic fungus Chaetomium globosum JN711454.
    Selim KA; El-Beih AA; Abdel-Rahman TM; El-Diwany AI
    Prep Biochem Biotechnol; 2016; 46(2):131-40. PubMed ID: 25569373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in the metabolism of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid monoglucuronide by human intestinal flora.
    Akao T
    Biol Pharm Bull; 2000 Dec; 23(12):1418-23. PubMed ID: 11145169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation.
    Ezeilo UR; Lee CT; Huyop F; Zakaria II; Wahab RA
    J Environ Manage; 2019 Aug; 243():206-217. PubMed ID: 31096173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.