These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34540904)

  • 21. A Variable Stiffness Actuator Module With Favorable Mass Distribution for a Bio-inspired Biped Robot.
    Rodriguez-Cianca D; Weckx M; Jimenez-Fabian R; Torricelli D; Gonzalez-Vargas J; Sanchez-Villamañan MC; Sartori M; Berns K; Vanderborght B; Pons JL; Lefeber D
    Front Neurorobot; 2019; 13():20. PubMed ID: 31156418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanics of knee ligaments.
    Woo SL; Debski RE; Withrow JD; Janaushek MA
    Am J Sports Med; 1999; 27(4):533-43. PubMed ID: 10424228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of a 3D-printed hand prosthesis featuring articulated bio-inspired fingers.
    Cuellar JS; Plettenburg D; Zadpoor AA; Breedveld P; Smit G
    Proc Inst Mech Eng H; 2021 Mar; 235(3):336-345. PubMed ID: 33292076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y
    Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review on robotic fish enabled by ionic polymer-metal composite artificial muscles.
    Chen Z
    Robotics Biomim; 2017; 4(1):24. PubMed ID: 29264109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and clinical implementation of an open-source bionic leg.
    Azocar AF; Mooney LM; Duval JF; Simon AM; Hargrove LJ; Rouse EJ
    Nat Biomed Eng; 2020 Oct; 4(10):941-953. PubMed ID: 33020601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance.
    Chen C; Zhang Y; Li Y; Wang Z; Liu Y; Cao W; Wu X
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biarticular elements as a contributor to energy efficiency: biomechanical review and application in bio-inspired robotics.
    Junius K; Moltedo M; Cherelle P; Rodriguez-Guerrero C; Vanderborght B; Lefeber D
    Bioinspir Biomim; 2017 Nov; 12(6):061001. PubMed ID: 28718780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Knee endoprostheses: problems and technological developments from the manufacturer's point of view].
    Blömer W
    Orthopade; 2000 Aug; 29(8):688-96. PubMed ID: 11013911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.
    Ashkani O; Maleki A; Jamshidi N
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):137-144. PubMed ID: 27896688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental Validation of Motor Primitive-Based Control for Leg Exoskeletons during Continuous Multi-Locomotion Tasks.
    Ruiz Garate V; Parri A; Yan T; Munih M; Molino Lova R; Vitiello N; Ronsse R
    Front Neurorobot; 2017; 11():15. PubMed ID: 28367121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of a knee joint mechanism that adapts to individual physiology.
    Jiun-Yih Kuan ; Pasch KA; Herr HM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2061-4. PubMed ID: 25570389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strength requirements for internal and external prostheses.
    Paul JP
    J Biomech; 1999 Apr; 32(4):381-93. PubMed ID: 10213028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shape synthesis of an assistive knee exoskeleton device to support knee joint and rehabilitate gait.
    Singh R; Chaudhary H; Singh AK
    Disabil Rehabil Assist Technol; 2019 Jul; 14(5):462-470. PubMed ID: 30044676
    [No Abstract]   [Full Text] [Related]  

  • 37. Robotic prosthesis that maintains flexion posture.
    Katsumura M; Obayashi S; Yano K; Hamada A; Nakao T; Torii K
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6652-6655. PubMed ID: 31947367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bio-inspired flexible joints with passive feathering for robotic fish pectoral fins.
    Behbahani SB; Tan X
    Bioinspir Biomim; 2016 May; 11(3):036009. PubMed ID: 27144946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical modeling and load-carrying simulation of lower limb exoskeleton.
    Zhu Y; Zhang G; Zhang C; Liu G; Zhao J
    Biomed Mater Eng; 2015; 26 Suppl 1():S729-38. PubMed ID: 26406068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advancements in prosthetic hand technology.
    Saikia A; Mazumdar S; Sahai N; Paul S; Bhatia D; Verma S; Rohilla PK
    J Med Eng Technol; 2016 Jul; 40(5):255-64. PubMed ID: 27098838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.