These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 34540954)
1. Textural differences based on apparent diffusion coefficient maps for discriminating pT3 subclasses of rectal adenocarcinoma. Lu ZH; Xia KJ; Jiang H; Jiang JL; Wu M World J Clin Cases; 2021 Aug; 9(24):6987-6998. PubMed ID: 34540954 [TBL] [Abstract][Full Text] [Related]
2. Prediction of Clinical Pathologic Prognostic Factors for Rectal Adenocarcinoma: Volumetric Texture Analysis Based on Apparent Diffusion Coefficient Maps. Lu Z; Wang L; Xia K; Jiang H; Weng X; Jiang J; Wu M J Med Syst; 2019 Nov; 43(12):331. PubMed ID: 31701309 [TBL] [Abstract][Full Text] [Related]
3. Distinguishing T1-2 and T3a tumors of rectal cancer with texture analysis and functional MRI parameters. Sun D; Wu X; Wang L; Li G; Huang J; Li Y Diagn Interv Radiol; 2022 May; 28(3):200-207. PubMed ID: 35748201 [TBL] [Abstract][Full Text] [Related]
4. Texture Analysis in the Assessment of Rectal Cancer: Comparison of T2WI and Diffusion-Weighted Imaging. Li M; Xu X; Qian P; Jiang H; Jiang J; Sun J; Lu Z Comput Math Methods Med; 2021; 2021():9976440. PubMed ID: 34567237 [TBL] [Abstract][Full Text] [Related]
5. Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer. Liu L; Liu Y; Xu L; Li Z; Lv H; Dong N; Li W; Yang Z; Wang Z; Jin E J Magn Reson Imaging; 2017 Jun; 45(6):1798-1808. PubMed ID: 27654307 [TBL] [Abstract][Full Text] [Related]
6. Prediction of different stages of rectal cancer: Texture analysis based on diffusion-weighted images and apparent diffusion coefficient maps. Yin JD; Song LR; Lu HC; Zheng X World J Gastroenterol; 2020 May; 26(17):2082-2096. PubMed ID: 32536776 [TBL] [Abstract][Full Text] [Related]
7. Performances of Whole Tumor Texture Analysis Based on MRI: Predicting Preoperative T Stage of Rectal Carcinomas. You J; Yin J Front Oncol; 2021; 11():678441. PubMed ID: 34414105 [TBL] [Abstract][Full Text] [Related]
8. Value of MRI texture analysis for predicting high-grade prostate cancer. Xiong H; He X; Guo D Clin Imaging; 2021 Apr; 72():168-174. PubMed ID: 33279769 [TBL] [Abstract][Full Text] [Related]
9. Histogram analysis of apparent diffusion coefficient at 3.0 T in urinary bladder lesions: correlation with pathologic findings. Suo ST; Chen XX; Fan Y; Wu LM; Yao QY; Cao MQ; Liu Q; Xu JR Acad Radiol; 2014 Aug; 21(8):1027-34. PubMed ID: 24833566 [TBL] [Abstract][Full Text] [Related]
11. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Wibmer A; Hricak H; Gondo T; Matsumoto K; Veeraraghavan H; Fehr D; Zheng J; Goldman D; Moskowitz C; Fine SW; Reuter VE; Eastham J; Sala E; Vargas HA Eur Radiol; 2015 Oct; 25(10):2840-50. PubMed ID: 25991476 [TBL] [Abstract][Full Text] [Related]
12. Texture analysis of conventional magnetic resonance imaging and diffusion-weighted imaging for distinguishing sinonasal non-Hodgkin's lymphoma from squamous cell carcinoma. Su GY; Liu J; Xu XQ; Lu MP; Yin M; Wu FY Eur Arch Otorhinolaryngol; 2022 Dec; 279(12):5715-5720. PubMed ID: 35731296 [TBL] [Abstract][Full Text] [Related]
13. Value of conventional magnetic resonance imaging texture analysis in the differential diagnosis of benign and borderline/malignant phyllodes tumors of the breast. Li X; Jiang N; Zhang C; Luo X; Zhong P; Fang J Cancer Imaging; 2021 Mar; 21(1):29. PubMed ID: 33712070 [TBL] [Abstract][Full Text] [Related]
14. Rectal Cancer Invasiveness: Whole-Lesion Diffusion-Weighted Imaging (DWI) Histogram Analysis by Comparison of Reduced Field-of-View and Conventional DWI Techniques. Peng Y; Tang H; Hu X; Shen Y; Kamel I; Li Z; Hu D Sci Rep; 2019 Dec; 9(1):18760. PubMed ID: 31822707 [TBL] [Abstract][Full Text] [Related]
15. [Discussion on pT3 staging in TNM staging of AJCC 8(th) edition gallbladder carcinoma]. Yang FC; Li JD; Duan AQ; Bo ZY; Shen NJ; Zhu B; Yu WL; Cui LJ; Wang X; Yu LH; Yin L; Fu XH; Zhang YJ; Qiu YH Zhonghua Wai Ke Za Zhi; 2019 Nov; 57(11):834-839. PubMed ID: 31694132 [No Abstract] [Full Text] [Related]
16. Histogram Analysis of Apparent Diffusion Coefficient in Differentiating Pancreatic Adenocarcinoma and Neuroendocrine Tumor. Shindo T; Fukukura Y; Umanodan T; Takumi K; Hakamada H; Nakajo M; Umanodan A; Ideue J; Kamimura K; Yoshiura T Medicine (Baltimore); 2016 Jan; 95(4):e2574. PubMed ID: 26825900 [TBL] [Abstract][Full Text] [Related]
17. [Predictive value of combination of MRI tumor regression grade and apparent diffusion coefficient for pathological complete remission after neoadjuvant treatment of locally advanced rectal cancer]. Xu N; Huang FC; Li WL; Luan X; Jiang YM; He B Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Apr; 24(4):359-365. PubMed ID: 33878826 [No Abstract] [Full Text] [Related]
18. Whole-Tumor Quantitative Apparent Diffusion Coefficient Histogram and Texture Analysis to Differentiation of Minimal Fat Angiomyolipoma from Clear Cell Renal Cell Carcinoma. Li H; Li A; Zhu H; Hu Y; Li J; Xia L; Hu D; Kamel IR; Li Z Acad Radiol; 2019 May; 26(5):632-639. PubMed ID: 30087067 [TBL] [Abstract][Full Text] [Related]
19. Whole-Tumor Quantitative Apparent Diffusion Coefficient Histogram and Texture Analysis to Predict Gleason Score Upgrading in Intermediate-Risk 3 + 4 = 7 Prostate Cancer. Rozenberg R; Thornhill RE; Flood TA; Hakim SW; Lim C; Schieda N AJR Am J Roentgenol; 2016 Apr; 206(4):775-82. PubMed ID: 27003049 [TBL] [Abstract][Full Text] [Related]
20. Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study. Goyal A; Razik A; Kandasamy D; Seth A; Das P; Ganeshan B; Sharma R Abdom Radiol (NY); 2019 Oct; 44(10):3336-3349. PubMed ID: 31300850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]