These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 34541879)

  • 1. Multimodel Order Independent Component Analysis: A Data-Driven Method for Evaluating Brain Functional Network Connectivity Within and Between Multiple Spatial Scales.
    Meng X; Iraji A; Fu Z; Kochunov P; Belger A; Ford J; McEwen S; Mathalon DH; Mueller BA; Pearlson G; Potkin SG; Preda A; Turner J; Erp TV; Sui J; Calhoun VD
    Brain Connect; 2022 Sep; 12(7):617-628. PubMed ID: 34541879
    [No Abstract]   [Full Text] [Related]  

  • 2. Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from resting data: A large N fMRI schizophrenia study.
    Meng X; Iraji A; Fu Z; Kochunov P; Belger A; Ford JM; McEwen S; Mathalon DH; Mueller BA; Pearlson G; Potkin SG; Preda A; Turner J; van Erp TGM; Sui J; Calhoun VD
    Neuroimage Clin; 2023; 38():103434. PubMed ID: 37209635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for estimating dynamic functional network connectivity gradients (dFNG) from ICA captures smooth inter-network modulation.
    Soleimani N; Iraji A; van Erp TGM; Belger A; Calhoun VD
    bioRxiv; 2024 Jun; ():. PubMed ID: 38559041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Method to Estimate Longitudinal Change Patterns in Functional Network Connectivity of the Developing Brain Relevant to Psychiatric Problems, Cognition, and Age.
    Saha R; Saha DK; Rahaman MA; Fu Z; Liu J; Calhoun VD
    Brain Connect; 2024 Mar; 14(2):130-140. PubMed ID: 38308475
    [No Abstract]   [Full Text] [Related]  

  • 5. A confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer's disease using resting-state functional network connectivity.
    Hassanzadeh R; Abrol A; Pearlson G; Turner JA; Calhoun VD
    PLoS One; 2024; 19(5):e0293053. PubMed ID: 38768123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tri-Clustering Dynamic Functional Network Connectivity Identifies Significant Schizophrenia Effects Across Multiple States in Distinct Subgroups of Individuals.
    Rahaman MA; Damaraju E; Turner JA; van Erp TGM; Mathalon D; Vaidya J; Muller B; Pearlson G; Calhoun VD
    Brain Connect; 2022 Feb; 12(1):61-73. PubMed ID: 34049447
    [No Abstract]   [Full Text] [Related]  

  • 7. Group ICA for identifying biomarkers in schizophrenia: 'Adaptive' networks via spatially constrained ICA show more sensitivity to group differences than spatio-temporal regression.
    Salman MS; Du Y; Lin D; Fu Z; Fedorov A; Damaraju E; Sui J; Chen J; Mayer AR; Posse S; Mathalon DH; Ford JM; Van Erp T; Calhoun VD
    Neuroimage Clin; 2019; 22():101747. PubMed ID: 30921608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between Dynamic Blood-Oxygen-Level-Dependent Activity and Functional Network Connectivity: Characterization of Schizophrenia Subgroups.
    Long Q; Bhinge S; Calhoun VD; Adali T
    Brain Connect; 2021 Aug; 11(6):430-446. PubMed ID: 33724055
    [No Abstract]   [Full Text] [Related]  

  • 9. A method for functional network connectivity among spatially independent resting-state components in schizophrenia.
    Jafri MJ; Pearlson GD; Stevens M; Calhoun VD
    Neuroimage; 2008 Feb; 39(4):1666-81. PubMed ID: 18082428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Classification-Based Approach to Estimate the Number of Resting Functional Magnetic Resonance Imaging Dynamic Functional Connectivity States.
    Saha DK; Damaraju E; Rashid B; Abrol A; Plis SM; Calhoun VD
    Brain Connect; 2021 Mar; 11(2):132-145. PubMed ID: 33317408
    [No Abstract]   [Full Text] [Related]  

  • 11. Multi-spatial-scale dynamic interactions between functional sources reveal sex-specific changes in schizophrenia.
    Iraji A; Faghiri A; Fu Z; Rachakonda S; Kochunov P; Belger A; Ford JM; McEwen S; Mathalon DH; Mueller BA; Pearlson GD; Potkin SG; Preda A; Turner JA; van Erp TGM; Calhoun VD
    Netw Neurosci; 2022 Jun; 6(2):357-381. PubMed ID: 35733435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetoencephalographic and functional MRI connectomics in schizophrenia via intra- and inter-network connectivity.
    Houck JM; Çetin MS; Mayer AR; Bustillo JR; Stephen J; Aine C; Cañive J; Perrone-Bizzozero N; Thoma RJ; Brookes MJ; Calhoun VD
    Neuroimage; 2017 Jan; 145(Pt A):96-106. PubMed ID: 27725313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear functional network connectivity in resting functional magnetic resonance imaging data.
    Motlaghian SM; Belger A; Bustillo JR; Ford JM; Iraji A; Lim K; Mathalon DH; Mueller BA; O'Leary D; Pearlson G; Potkin SG; Preda A; van Erp TGM; Calhoun VD
    Hum Brain Mapp; 2022 Oct; 43(15):4556-4566. PubMed ID: 35762454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered topological properties of functional network connectivity in schizophrenia during resting state: a small-world brain network study.
    Yu Q; Sui J; Rachakonda S; He H; Gruner W; Pearlson G; Kiehl KA; Calhoun VD
    PLoS One; 2011; 6(9):e25423. PubMed ID: 21980454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability and clinical utility of spatially constrained estimates of intrinsic functional networks from very short fMRI scans.
    Duda M; Iraji A; Ford JM; Lim KO; Mathalon DH; Mueller BA; Potkin SG; Preda A; Van Erp TGM; Calhoun VD
    Hum Brain Mapp; 2023 Apr; 44(6):2620-2635. PubMed ID: 36840728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for estimating and characterizing explicitly nonlinear dynamic functional network connectivity in resting-state fMRI data.
    Motlaghian SM; Vahidi V; Belger A; Bustillo JR; Faghiri A; Ford JM; Iraji A; Lim K; Mathalon DH; Miller R; Mueller BA; O'Leary D; Potkin SG; Preda A; van Erp TG; Calhoun VD
    J Neurosci Methods; 2023 Apr; 389():109794. PubMed ID: 36652974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic changes of spatial functional network connectivity in healthy individuals and schizophrenia patients using independent vector analysis.
    Ma S; Calhoun VD; Phlypo R; Adalı T
    Neuroimage; 2014 Apr; 90():196-206. PubMed ID: 24418507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An approach to directly link ICA and seed-based functional connectivity: Application to schizophrenia.
    Wu L; Caprihan A; Bustillo J; Mayer A; Calhoun V
    Neuroimage; 2018 Oct; 179():448-470. PubMed ID: 29894827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: application to schizophrenia, bipolar, and schizoaffective disorders.
    Du Y; Pearlson GD; Liu J; Sui J; Yu Q; He H; Castro E; Calhoun VD
    Neuroimage; 2015 Nov; 122():272-80. PubMed ID: 26216278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic functional network connectivity analysis in schizophrenia based on a spatiotemporal CPD framework.
    Kuang LD; Li HQ; Zhang J; Gui Y; Zhang J
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38335544
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.