These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 34542277)
1. Highly Enhanced Thermoelectric and Mechanical Properties of Bi-Sb-Te Compounds by Carrier Modulation and Microstructure Adjustment. Liang H; Lou Q; Zhu YK; Guo J; Wang ZY; Gu SW; Yu W; Feng J; He J; Ge ZH ACS Appl Mater Interfaces; 2021 Sep; 13(38):45589-45599. PubMed ID: 34542277 [TBL] [Abstract][Full Text] [Related]
2. Boosting High Thermoelectric Performance of Ni-Doped Cu Shen F; Zheng Y; Miao L; Liu C; Gao J; Wang X; Liu P; Yoshida K; Cai H ACS Appl Mater Interfaces; 2020 Feb; 12(7):8385-8391. PubMed ID: 31909970 [TBL] [Abstract][Full Text] [Related]
3. Achieving high thermoelectric performance of Cu Qin P; Ge ZH; Chen YX; Chong X; Feng J; He J Nanotechnology; 2018 Aug; 29(34):345402. PubMed ID: 29848808 [TBL] [Abstract][Full Text] [Related]
4. High Thermoelectric Performance of Bi Zhang D; Wang J; Zhang L; Lei J; Ma Z; Wang C; Guan W; Cheng Z; Wang Y ACS Appl Mater Interfaces; 2019 Oct; 11(40):36658-36665. PubMed ID: 31483591 [TBL] [Abstract][Full Text] [Related]
5. Synergistic Optimization of Electrical-Thermal-Mechanical Properties of the In-Filled CoSb Zhu J; Liu Z; Tong X; Xia A; Xu D; Lei Y; Yu J; Tang D; Ruan X; Zhao W ACS Appl Mater Interfaces; 2021 May; 13(20):23894-23904. PubMed ID: 34000180 [TBL] [Abstract][Full Text] [Related]
6. Effects of doping on transport properties in Cu-Bi-Se-based thermoelectric materials. Hwang JY; Mun HA; Kim SI; Lee KM; Kim J; Lee KH; Kim SW Inorg Chem; 2014 Dec; 53(24):12732-8. PubMed ID: 25402498 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Thermoelectric Performance of Bi Tao Q; Deng R; Li J; Yan Y; Su X; Poudeu PFP; Tang X ACS Appl Mater Interfaces; 2020 Jun; 12(23):26330-26341. PubMed ID: 32401006 [TBL] [Abstract][Full Text] [Related]
8. Fe-Doping Effect on Thermoelectric Properties of Mun H; Lee KH; Kim SJ; Kim JY; Lee JH; Lim JH; Park HJ; Roh JW; Kim SW Materials (Basel); 2015 Mar; 8(3):959-965. PubMed ID: 28787981 [TBL] [Abstract][Full Text] [Related]
9. High-Performance p-Type Bi Wang X; Shang H; Gu H; Chen Y; Zhang Z; Zou Q; Zhang L; Feng C; Li G; Ding F ACS Appl Mater Interfaces; 2024 Mar; 16(9):11678-11685. PubMed ID: 38386610 [TBL] [Abstract][Full Text] [Related]
10. Electrical Transport and Thermoelectric Properties of SnSe-SnTe Solid Solution. Cho JY; Siyar M; Jin WC; Hwang E; Bae SH; Hong SH; Kim M; Park C Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31766632 [TBL] [Abstract][Full Text] [Related]
11. Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figure-of-Merit in (Mg, Bi) Co-Doped GeTe. Xing T; Zhu C; Song Q; Huang H; Xiao J; Ren D; Shi M; Qiu P; Shi X; Xu F; Chen L Adv Mater; 2021 Apr; 33(17):e2008773. PubMed ID: 33760288 [TBL] [Abstract][Full Text] [Related]
12. Thermoelectric transport properties of pristine and Na-doped SnSe(1-x)Te(x) polycrystals. Wei TR; Wu CF; Zhang X; Tan Q; Sun L; Pan Y; Li JF Phys Chem Chem Phys; 2015 Nov; 17(44):30102-9. PubMed ID: 26496971 [TBL] [Abstract][Full Text] [Related]
13. Low Thermal Conductivity and Optimized Thermoelectric Properties of p-Type Te-Sb An D; Chen S; Lu Z; Li R; Chen W; Fan W; Wang W; Wu Y ACS Appl Mater Interfaces; 2019 Aug; 11(31):27788-27797. PubMed ID: 31287652 [TBL] [Abstract][Full Text] [Related]
14. Thermoelectric Performance Enhancement in Commercial Bi Li S; Zhao W; Cheng Y; Chen L; Xu M; Guo K; Pan F ACS Appl Mater Interfaces; 2023 Jan; 15(1):1167-1174. PubMed ID: 36546598 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe. Zhao LD; Zhang X; Wu H; Tan G; Pei Y; Xiao Y; Chang C; Wu D; Chi H; Zheng L; Gong S; Uher C; He J; Kanatzidis MG J Am Chem Soc; 2016 Feb; 138(7):2366-73. PubMed ID: 26871965 [TBL] [Abstract][Full Text] [Related]
16. Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity. Saparamadu U; Li C; He R; Zhu H; Ren Z; Mao J; Song S; Sun J; Chen S; Zhang Q; Nielsch K; Broido D; Ren Z ACS Appl Mater Interfaces; 2019 Jan; 11(1):511-516. PubMed ID: 30525424 [TBL] [Abstract][Full Text] [Related]
17. Realizing High Thermoelectric Performance in Sb-Doped Ag Zhu T; Bai H; Zhang J; Tan G; Yan Y; Liu W; Su X; Wu J; Zhang Q; Tang X ACS Appl Mater Interfaces; 2020 Sep; 12(35):39425-39433. PubMed ID: 32805902 [TBL] [Abstract][Full Text] [Related]
18. Low Thermal Conductivity and High Thermoelectric Performance in (GeTe) Samanta M; Biswas K J Am Chem Soc; 2017 Jul; 139(27):9382-9391. PubMed ID: 28625055 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Thermoelectric Properties of Cu Cheng X; Zhu B; Yang D; Su X; Liu W; Xie H; Zheng Y; Tang X ACS Appl Mater Interfaces; 2022 Feb; 14(4):5439-5446. PubMed ID: 35073688 [TBL] [Abstract][Full Text] [Related]
20. Vacancy-Based Defect Regulation for High Thermoelectric Performance in Ge Chen S; Bai H; Li J; Pan W; Jiang X; Li Z; Chen Z; Yan Y; Su X; Wu J; Uher C; Tang X ACS Appl Mater Interfaces; 2020 Apr; 12(17):19664-19673. PubMed ID: 32255612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]