BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34542280)

  • 1. Random Base Editing for Genome Evolution in
    Pan Y; Xia S; Dong C; Pan H; Cai J; Huang L; Xu Z; Lian J
    ACS Synth Biol; 2021 Oct; 10(10):2440-2446. PubMed ID: 34542280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes.
    Lada AG; Kliver SF; Dhar A; Polev DE; Masharsky AE; Rogozin IB; Pavlov YI
    PLoS Genet; 2015 May; 11(5):e1005217. PubMed ID: 25941824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helicase-AID: A novel molecular device for base editing at random genomic loci.
    Wang J; Zhao D; Li J; Hu M; Xin X; Price MA; Li Q; Liu L; Li S; Rosser SJ; Zhang C; Bi C; Zhang X
    Metab Eng; 2021 Sep; 67():396-402. PubMed ID: 34411701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of multiple simultaneous double-strand breaks causes bursts of genome-wide clustered hypermutation.
    Sakofsky CJ; Saini N; Klimczak LJ; Chan K; Malc EP; Mieczkowski PA; Burkholder AB; Fargo D; Gordenin DA
    PLoS Biol; 2019 Sep; 17(9):e3000464. PubMed ID: 31568516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision.
    Bao Z; HamediRad M; Xue P; Xiao H; Tasan I; Chao R; Liang J; Zhao H
    Nat Biotechnol; 2018 Jul; 36(6):505-508. PubMed ID: 29734295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A history of genome editing in Saccharomyces cerevisiae.
    Alexander WG
    Yeast; 2018 May; 35(5):355-360. PubMed ID: 29247562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration.
    Huang S; Geng A
    J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication protein A (RPA) hampers the processive action of APOBEC3G cytosine deaminase on single-stranded DNA.
    Lada AG; Waisertreiger IS; Grabow CE; Prakash A; Borgstahl GE; Rogozin IB; Pavlov YI
    PLoS One; 2011; 6(9):e24848. PubMed ID: 21935481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing.
    McGrath E; Shin H; Zhang L; Phue JN; Wu WW; Shen RF; Jang YY; Revollo J; Ye Z
    Nat Commun; 2019 Nov; 10(1):5353. PubMed ID: 31767844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise Editing at DNA Replication Forks Enables Multiplex Genome Engineering in Eukaryotes.
    Barbieri EM; Muir P; Akhuetie-Oni BO; Yellman CM; Isaacs FJ
    Cell; 2017 Nov; 171(6):1453-1467.e13. PubMed ID: 29153834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA Editing by APOBECs: A Genomic Preserver and Transformer.
    Knisbacher BA; Gerber D; Levanon EY
    Trends Genet; 2016 Jan; 32(1):16-28. PubMed ID: 26608778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. APOBEC3B cytidine deaminase targets the non-transcribed strand of tRNA genes in yeast.
    Saini N; Roberts SA; Sterling JF; Malc EP; Mieczkowski PA; Gordenin DA
    DNA Repair (Amst); 2017 May; 53():4-14. PubMed ID: 28351647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. APOBEC3A and APOBEC3B Preferentially Deaminate the Lagging Strand Template during DNA Replication.
    Hoopes JI; Cortez LM; Mertz TM; Malc EP; Mieczkowski PA; Roberts SA
    Cell Rep; 2016 Feb; 14(6):1273-1282. PubMed ID: 26832400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MagnEdit-interacting factors that recruit DNA-editing enzymes to single base targets.
    McCann JL; Salamango DJ; Law EK; Brown WL; Harris RS
    Life Sci Alliance; 2020 Apr; 3(4):. PubMed ID: 32094150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae.
    Swiat MA; Dashko S; den Ridder M; Wijsman M; van der Oost J; Daran JM; Daran-Lapujade P
    Nucleic Acids Res; 2017 Dec; 45(21):12585-12598. PubMed ID: 29106617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52.
    Firmenich AA; Elias-Arnanz M; Berg P
    Mol Cell Biol; 1995 Mar; 15(3):1620-31. PubMed ID: 7862153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The karyopherin Kap95 and the C-termini of Rfa1, Rfa2, and Rfa3 are necessary for efficient nuclear import of functional RPA complex proteins in Saccharomyces cerevisiae.
    Belanger KD; Griffith AL; Baker HL; Hansen JN; Kovacs LA; Seconi JS; Strine AC
    DNA Cell Biol; 2011 Sep; 30(9):641-51. PubMed ID: 21332387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cytidine deaminases AID and APOBEC-1 exhibit distinct functional properties in a novel yeast selectable system.
    Krause K; Marcu KB; Greeve J
    Mol Immunol; 2006 Feb; 43(4):295-307. PubMed ID: 15963568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mutation in the gene encoding the Saccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 stimulates a RAD52-independent pathway for direct-repeat recombination.
    Smith J; Rothstein R
    Mol Cell Biol; 1995 Mar; 15(3):1632-41. PubMed ID: 7862154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rationally designed perturbation factor drives evolution in Saccharomyces cerevisiae for industrial application.
    Xu X; Liu C; Niu C; Wang J; Zheng F; Li Y; Li Q
    J Ind Microbiol Biotechnol; 2018 Oct; 45(10):869-880. PubMed ID: 30076552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.