These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34542685)

  • 21. Identification of Process-Related Impurities and Corresponding Control Strategy in Biocatalytic Production of 2-
    Zhou Y; Lv X; Chen L; Zhang H; Zhu L; Lu Y; Chen X
    J Agric Food Chem; 2022 Apr; 70(16):5066-5076. PubMed ID: 35412325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds.
    Li G; Fang X; Su F; Chen Y; Xu L; Yan Y
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101200
    [No Abstract]   [Full Text] [Related]  

  • 23. Expression and Characterization of Recombinant Sucrose Phosphorylase.
    Zhang H; Sun X; Li W; Li T; Li S; Kitaoka M
    Protein J; 2018 Feb; 37(1):93-100. PubMed ID: 29380264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzymatic synthesis of alkyl glucosides using Leuconostoc mesenteroides dextransucrase.
    Kim YM; Kim BH; Ahn JS; Kim GE; Jin SD; Nguyen TH; Kim D
    Biotechnol Lett; 2009 Sep; 31(9):1433-8. PubMed ID: 19458920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sucrose phosphorylase as cross-linked enzyme aggregate: improved thermal stability for industrial applications.
    Cerdobbel A; De Winter K; Desmet T; Soetaert W
    Biotechnol J; 2010 Nov; 5(11):1192-7. PubMed ID: 20872729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing regioselectivity of sucrose phosphorylase by loop engineering for glycosylation of L-ascorbic acid.
    Zhou Y; Ke F; Chen L; Lu Y; Zhu L; Chen X
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4575-4586. PubMed ID: 35739344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of thermostability of kojibiose phosphorylase from Thermoanaerobacter brockii ATCC35047 by random mutagenesis.
    Yamamoto T; Mukai K; Yamashita H; Kubota M; Fukuda S; Kurimoto M; Tsujisaka Y
    J Biosci Bioeng; 2005 Aug; 100(2):212-5. PubMed ID: 16198267
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acid-base catalysis in Leuconostoc mesenteroides sucrose phosphorylase probed by site-directed mutagenesis and detailed kinetic comparison of wild-type and Glu237-->Gln mutant enzymes.
    Schwarz A; Brecker L; Nidetzky B
    Biochem J; 2007 May; 403(3):441-9. PubMed ID: 17233628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The quest for a thermostable sucrose phosphorylase reveals sucrose 6'-phosphate phosphorylase as a novel specificity.
    Verhaeghe T; Aerts D; Diricks M; Soetaert W; Desmet T
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):7027-37. PubMed ID: 24599311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increasing the thermostability of sucrose phosphorylase by a combination of sequence- and structure-based mutagenesis.
    Cerdobbel A; De Winter K; Aerts D; Kuipers R; Joosten HJ; Soetaert W; Desmet T
    Protein Eng Des Sel; 2011 Nov; 24(11):829-34. PubMed ID: 21900303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of the compatible solute α-D-glucosylglycerol by metabolically engineered Corynebacterium glutamicum.
    Roenneke B; Rosenfeldt N; Derya SM; Novak JF; Marin K; Krämer R; Seibold GM
    Microb Cell Fact; 2018 Jun; 17(1):94. PubMed ID: 29908566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trehalose phosphorylase from Pleurotus ostreatus: characterization and stabilization by covalent modification, and application for the synthesis of alpha,alpha-trehalose.
    Schwarz A; Goedl C; Minani A; Nidetzky B
    J Biotechnol; 2007 Mar; 129(1):140-50. PubMed ID: 17222933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uptake and use of the osmoprotective compounds trehalose, glucosylglycerol, and sucrose by the cyanobacterium Synechocystis sp. PCC6803.
    Mikkat S; Effmert U; Hagemann M
    Arch Microbiol; 1997; 167(2-3):112-8. PubMed ID: 9133317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy- and evolution-based design of inulosucrase for enhanced thermostability and inulin production.
    Charoenwongpaiboon T; Wangpaiboon K; Puangpathanachai M; Pongsawasdi P; Pichyangkura R
    Appl Microbiol Biotechnol; 2023 Nov; 107(22):6831-6843. PubMed ID: 37688600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing the Thermostability of Serratia plymuthica Sucrose Isomerase Using B-Factor-Directed Mutagenesis.
    Duan X; Cheng S; Ai Y; Wu J
    PLoS One; 2016; 11(2):e0149208. PubMed ID: 26886729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Creating Flavin Reductase Variants with Thermostable and Solvent-Tolerant Properties by Rational-Design Engineering.
    Maenpuen S; Pongsupasa V; Pensook W; Anuwan P; Kraivisitkul N; Pinthong C; Phonbuppha J; Luanloet T; Wijma HJ; Fraaije MW; Lawan N; Chaiyen P; Wongnate T
    Chembiochem; 2020 May; 21(10):1481-1491. PubMed ID: 31886941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of a Hotspot Residue for Improving the Thermostability of a Flavin-Dependent Monooxygenase.
    Pongpamorn P; Watthaisong P; Pimviriyakul P; Jaruwat A; Lawan N; Chitnumsub P; Chaiyen P
    Chembiochem; 2019 Dec; 20(24):3020-3031. PubMed ID: 31231908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chiral resolution through stereoselective transglycosylation by sucrose phosphorylase: application to the synthesis of a new biomimetic compatible solute, (R)-2-O-α-D-glucopyranosyl glyceric acid amide.
    Wildberger P; Brecker L; Nidetzky B
    Chem Commun (Camb); 2014 Jan; 50(4):436-8. PubMed ID: 24253490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation and directed evolution for thermostability improvement of a GH 13 thermostable α-glucosidase from Thermus thermophilus TC11.
    Zhou C; Xue Y; Ma Y
    BMC Biotechnol; 2015 Oct; 15():97. PubMed ID: 26490269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural basis for reversible phosphorolysis and hydrolysis reactions of 2-O-α-glucosylglycerol phosphorylase.
    Touhara KK; Nihira T; Kitaoka M; Nakai H; Fushinobu S
    J Biol Chem; 2014 Jun; 289(26):18067-75. PubMed ID: 24828502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.