These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 34542717)
1. WaveICA 2.0: a novel batch effect removal method for untargeted metabolomics data without using batch information. Deng K; Zhao F; Rong Z; Cao L; Zhang L; Li K; Hou Y; Zhu ZJ Metabolomics; 2021 Sep; 17(10):87. PubMed ID: 34542717 [TBL] [Abstract][Full Text] [Related]
2. WaveICA: A novel algorithm to remove batch effects for large-scale untargeted metabolomics data based on wavelet analysis. Deng K; Zhang F; Tan Q; Huang Y; Song W; Rong Z; Zhu ZJ; Li K; Li Z Anal Chim Acta; 2019 Jul; 1061():60-69. PubMed ID: 30926040 [TBL] [Abstract][Full Text] [Related]
3. Model selection for within-batch effect correction in UPLC-MS metabolomics using quality control - Support vector regression. Sánchez-Illana Á; Pérez-Guaita D; Cuesta-García D; Sanjuan-Herráez JD; Vento M; Ruiz-Cerdá JL; Quintás G; Kuligowski J Anal Chim Acta; 2018 Oct; 1026():62-68. PubMed ID: 29852994 [TBL] [Abstract][Full Text] [Related]
4. Large-scale untargeted LC-MS metabolomics data correction using between-batch feature alignment and cluster-based within-batch signal intensity drift correction. Brunius C; Shi L; Landberg R Metabolomics; 2016; 12(11):173. PubMed ID: 27746707 [TBL] [Abstract][Full Text] [Related]
5. Batch Normalizer: a fast total abundance regression calibration method to simultaneously adjust batch and injection order effects in liquid chromatography/time-of-flight mass spectrometry-based metabolomics data and comparison with current calibration methods. Wang SY; Kuo CH; Tseng YJ Anal Chem; 2013 Jan; 85(2):1037-46. PubMed ID: 23240878 [TBL] [Abstract][Full Text] [Related]
6. Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC). Kuligowski J; Sánchez-Illana Á; Sanjuán-Herráez D; Vento M; Quintás G Analyst; 2015 Nov; 140(22):7810-7. PubMed ID: 26462549 [TBL] [Abstract][Full Text] [Related]
7. NormAE: Deep Adversarial Learning Model to Remove Batch Effects in Liquid Chromatography Mass Spectrometry-Based Metabolomics Data. Rong Z; Tan Q; Cao L; Zhang L; Deng K; Huang Y; Zhu ZJ; Li Z; Li K Anal Chem; 2020 Apr; 92(7):5082-5090. PubMed ID: 32207605 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of intensity drift correction strategies using MetaboDrift, a normalization tool for multi-batch metabolomics data. Thonusin C; IglayReger HB; Soni T; Rothberg AE; Burant CF; Evans CR J Chromatogr A; 2017 Nov; 1523():265-274. PubMed ID: 28927937 [TBL] [Abstract][Full Text] [Related]
9. Detection of batch effects in liquid chromatography-mass spectrometry metabolomic data using guided principal component analysis. Kuligowski J; Pérez-Guaita D; Lliso I; Escobar J; León Z; Gombau L; Solberg R; Saugstad OD; Vento M; Quintás G Talanta; 2014 Dec; 130():442-8. PubMed ID: 25159433 [TBL] [Abstract][Full Text] [Related]
10. Regularized adversarial learning for normalization of multi-batch untargeted metabolomics data. Dmitrenko A; Reid M; Zamboni N Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825815 [TBL] [Abstract][Full Text] [Related]
11. MetaClean: a machine learning-based classifier for reduced false positive peak detection in untargeted LC-MS metabolomics data. Chetnik K; Petrick L; Pandey G Metabolomics; 2020 Oct; 16(11):117. PubMed ID: 33085002 [TBL] [Abstract][Full Text] [Related]
12. Strategy for comparative untargeted metabolomics reveals honey markers of different floral and geographic origins using ultrahigh-performance liquid chromatography-hybrid quadrupole-orbitrap mass spectrometry. Li Y; Jin Y; Yang S; Zhang W; Zhang J; Zhao W; Chen L; Wen Y; Zhang Y; Lu K; Zhang Y; Zhou J; Yang S J Chromatogr A; 2017 May; 1499():78-89. PubMed ID: 28390668 [TBL] [Abstract][Full Text] [Related]
13. Dissemination and analysis of the quality assurance (QA) and quality control (QC) practices of LC-MS based untargeted metabolomics practitioners. Evans AM; O'Donovan C; Playdon M; Beecher C; Beger RD; Bowden JA; Broadhurst D; Clish CB; Dasari S; Dunn WB; Griffin JL; Hartung T; Hsu PC; Huan T; Jans J; Jones CM; Kachman M; Kleensang A; Lewis MR; Monge ME; Mosley JD; Taylor E; Tayyari F; Theodoridis G; Torta F; Ubhi BK; Vuckovic D; Metabolomics; 2020 Oct; 16(10):113. PubMed ID: 33044703 [TBL] [Abstract][Full Text] [Related]
15. Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow. Kirwan JA; Broadhurst DI; Davidson RL; Viant MR Anal Bioanal Chem; 2013 Jun; 405(15):5147-57. PubMed ID: 23455646 [TBL] [Abstract][Full Text] [Related]
16. Addressing the batch effect issue for LC/MS metabolomics data in data preprocessing. Liu Q; Walker D; Uppal K; Liu Z; Ma C; Tran V; Li S; Jones DP; Yu T Sci Rep; 2020 Aug; 10(1):13856. PubMed ID: 32807888 [TBL] [Abstract][Full Text] [Related]
17. Improving data quality in liquid chromatography-mass spectrometry metabolomics of human urine. Burgos RCR; de Macedo AN; da Cruz PLR; Tedesco-Silva Júnior H; Cardozo KHM; Carvalho VM; Tavares MFM J Chromatogr A; 2021 Sep; 1654():462457. PubMed ID: 34404016 [TBL] [Abstract][Full Text] [Related]
18. Instrumental Drift in Untargeted Metabolomics: Optimizing Data Quality with Intrastudy QC Samples. Märtens A; Holle J; Mollenhauer B; Wegner A; Kirwan J; Hiller K Metabolites; 2023 May; 13(5):. PubMed ID: 37233706 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the technical variations and the suitability of a hydrophilic interaction liquid chromatography-high resolution mass spectrometry (ZIC-pHILIC-Exactive orbitrap) for clinical urinary metabolomics study. Zhang T; Watson DG J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Jun; 1022():199-205. PubMed ID: 27107246 [TBL] [Abstract][Full Text] [Related]
20. LC-MS untargeted metabolomics assesses the delayed response of glufosinate treatment of transgenic glufosinate resistant (GR) buffalo grasses (Stenotaphrum secundatum L.). Boonchaisri S; Rochfort S; Stevenson T; Dias DA Metabolomics; 2021 Feb; 17(3):28. PubMed ID: 33609206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]