These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 34542730)
1. Plasmon-Enhanced Light Absorption in (p-i-n) Junction GaAs Nanowire Solar Cells: An FDTD Simulation Method Study. Dawi EA; Karar AA; Mustafa E; Nur O Nanoscale Res Lett; 2021 Sep; 16(1):149. PubMed ID: 34542730 [TBL] [Abstract][Full Text] [Related]
2. Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells. Li Y; Yan X; Wu Y; Zhang X; Ren X Nanoscale Res Lett; 2015 Dec; 10(1):436. PubMed ID: 26546326 [TBL] [Abstract][Full Text] [Related]
3. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Pu YC; Wang G; Chang KD; Ling Y; Lin YK; Fitzmorris BC; Liu CM; Lu X; Tong Y; Zhang JZ; Hsu YJ; Li Y Nano Lett; 2013 Aug; 13(8):3817-23. PubMed ID: 23899318 [TBL] [Abstract][Full Text] [Related]
4. Absorption-Enhanced Ultra-Thin Solar Cells Based on Horizontally Aligned p-i-n Nanowire Arrays. Yuan X; Chen X; Yan X; Wei W; Zhang Y; Zhang X Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32512715 [TBL] [Abstract][Full Text] [Related]
5. The Structure Design and Photoelectric Properties of Wideband High Absorption Ge/GaAs/P3HT:PCBM Solar Cells. Zeng X; Su N; Wu P Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334641 [TBL] [Abstract][Full Text] [Related]
6. Analysis of optical absorption in GaAs nanowire arrays. Guo H; Wen L; Li X; Zhao Z; Wang Y Nanoscale Res Lett; 2011 Dec; 6(1):617. PubMed ID: 22145699 [TBL] [Abstract][Full Text] [Related]
7. Arrays of Plasmonic Nanostructures for Absorption Enhancement in Perovskite Thin Films. Shen T; Tan Q; Dai Z; Padture NP; Pacifici D Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32660111 [TBL] [Abstract][Full Text] [Related]
8. Large plasmonic absorption enhancement effect of triangular silver nanowires in silicon. Shahriar Sabuktagin M; Syifa Hamdan K R Soc Open Sci; 2020 Jul; 7(7):191926. PubMed ID: 32874602 [TBL] [Abstract][Full Text] [Related]
9. Solar Steam Generation and Desalination Using Ultra-Broadband Absorption in Plasmonic Alumina Nanowire Haze Structure-Graphene Oxide-Gold Nanoparticle Composite. Behera S; Kim C; Kim K Langmuir; 2020 Oct; 36(42):12494-12503. PubMed ID: 33049134 [TBL] [Abstract][Full Text] [Related]
10. Synergistic Effects of Localized Surface Plasmon Resonance, Surface Plasmon Polariton, and Waveguide Plasmonic Resonance on the Same Material: A Promising Hypothesis to Enhance Organic Solar Cell Efficiency. Ibrahim Zamkoye I; Lucas B; Vedraine S Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570526 [TBL] [Abstract][Full Text] [Related]
11. Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells. Wang B; Stevens E; Leu PW Opt Express; 2014 Mar; 22 Suppl 2():A386-95. PubMed ID: 24922248 [TBL] [Abstract][Full Text] [Related]
12. High-Performance Laterally Oriented Nanowire Solar Cells with Ag Gratings. Zhang Y; Li Y; Yuan X; Yan X; Zhang X Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835571 [TBL] [Abstract][Full Text] [Related]
13. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles. Kim Y; Lam ND; Kim K; Kim S; Rotermund F; Lim H; Lee J J Nanosci Nanotechnol; 2012 Jul; 12(7):5479-83. PubMed ID: 22966594 [TBL] [Abstract][Full Text] [Related]
14. Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes. Hylton NP; Li XF; Giannini V; Lee KH; Ekins-Daukes NJ; Loo J; Vercruysse D; Van Dorpe P; Sodabanlu H; Sugiyama M; Maier SA Sci Rep; 2013 Oct; 3():2874. PubMed ID: 24096686 [TBL] [Abstract][Full Text] [Related]
15. Plasmon-enhanced parabolic nanostructures for broadband absorption in ultra-thin crystalline Si solar cells. Pritom YA; Sikder DK; Zaman S; Hossain M Nanoscale Adv; 2023 Sep; 5(18):4986-4995. PubMed ID: 37705791 [TBL] [Abstract][Full Text] [Related]
16. Self-Organized Freestanding One-Dimensional Au Nanoparticle Arrays. Kang M; Yuwen Y; Hu W; Yun S; Mahalingam K; Jiang B; Eyink K; Poutrina E; Richardson K; Mayer TS ACS Nano; 2017 Jun; 11(6):5844-5852. PubMed ID: 28582622 [TBL] [Abstract][Full Text] [Related]
17. Enhancement in Power Conversion Efficiency of GaAs Solar Cells by Utilizing Gold Nanostar Film for Light-Trapping. Zhu SQ; Bian B; Zhu YF; Yang J; Zhang D; Feng L Front Chem; 2019; 7():137. PubMed ID: 30941345 [TBL] [Abstract][Full Text] [Related]
18. Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions. Wu Y; Yan X; Wei W; Zhang J; Zhang X; Ren X Nanoscale Res Lett; 2018 Apr; 13(1):126. PubMed ID: 29696454 [TBL] [Abstract][Full Text] [Related]
19. Absorption of light in a single-nanowire silicon solar cell decorated with an octahedral silver nanocrystal. Brittman S; Gao H; Garnett EC; Yang P Nano Lett; 2011 Dec; 11(12):5189-95. PubMed ID: 22082022 [TBL] [Abstract][Full Text] [Related]
20. Plasmon-enhanced broadband absorption of MoS Zhou K; Song J; Lu L; Luo Z; Cheng Q Opt Express; 2019 Feb; 27(3):2305-2316. PubMed ID: 30732269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]