These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34543006)

  • 1. Critical Evaluation of Different Lysosomal Labeling Methods Used to Analyze RNA Nanocarrier Trafficking in Cells.
    Iqbal S; Luo B; Melamed JR; Day ES
    Bioconjug Chem; 2021 Oct; 32(10):2245-2256. PubMed ID: 34543006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preoccupation of Empty Carriers Decreases Endo-/Lysosome Escape and Reduces the Protein Delivery Efficiency of Mesoporous Silica Nanoparticles.
    Li WQ; Sun LP; Xia Y; Hao S; Cheng G; Wang Z; Wan Y; Zhu C; He H; Zheng SY
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5340-5347. PubMed ID: 29345456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silencing of GFP expression in human mesenchymal stem cells using quaternary polyplexes of siRNA-PEI with glycosaminoglycans and albumin.
    Herrera LC; Shastri VP
    Acta Biomater; 2019 Nov; 99():397-411. PubMed ID: 31541736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rab11 and Lysotracker Markers Reveal Correlation between Endosomal Pathways and Transfection Efficiency of Surface-Functionalized Cationic Liposome-DNA Nanoparticles.
    Majzoub RN; Wonder E; Ewert KK; Kotamraju VR; Teesalu T; Safinya CR
    J Phys Chem B; 2016 Jul; 120(26):6439-53. PubMed ID: 27203598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scavenger receptor-recognized and enzyme-responsive nanoprobe for fluorescent labeling of lysosomes in live cells.
    Fan Y; Li F; Chen D
    Biomaterials; 2014 Sep; 35(27):7870-80. PubMed ID: 24929616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Amyloid Precursor Protein is rapidly transported from the Golgi apparatus to the lysosome and where it is processed into beta-amyloid.
    Tam JH; Seah C; Pasternak SH
    Mol Brain; 2014 Aug; 7():54. PubMed ID: 25085554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure Dependence of Lysosomal Transit of Chitosan-Based Polyplexes for Gene Delivery.
    Thibault M; Lavertu M; Astolfi M; Buschmann MD
    Mol Biotechnol; 2016 Oct; 58(10):648-656. PubMed ID: 27412655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery.
    Chen G; Wang Y; Xie R; Gong S
    J Control Release; 2017 Aug; 259():105-114. PubMed ID: 28159516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocarriers escaping from hyperacidified endo/lysosomes in cancer cells allow tumor-targeted intracellular delivery of antibodies to therapeutically inhibit c-MYC.
    Chen P; Yang W; Hong T; Miyazaki T; Dirisala A; Kataoka K; Cabral H
    Biomaterials; 2022 Sep; 288():121748. PubMed ID: 36038419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis.
    ur Rehman Z; Hoekstra D; Zuhorn IS
    ACS Nano; 2013 May; 7(5):3767-77. PubMed ID: 23597090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spherical Nucleic Acid Architecture Can Improve the Efficacy of Polycation-Mediated siRNA Delivery.
    Melamed JR; Kreuzberger NL; Goyal R; Day ES
    Mol Ther Nucleic Acids; 2018 Sep; 12():207-219. PubMed ID: 30195760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein machineries defining pathways of nanocarrier exocytosis and transcytosis.
    Reinholz J; Diesler C; Schöttler S; Kokkinopoulou M; Ritz S; Landfester K; Mailänder V
    Acta Biomater; 2018 Apr; 71():432-443. PubMed ID: 29530823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear Transport of the Molecular Drug via Nanocarrier-Based Nonendocytic Cellular Uptake.
    Sarkar AK; Shaw S; Arora H; Seth P; Jana NR
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39176-39185. PubMed ID: 37552859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein kinase A inhibition modulates the intracellular routing of gene delivery vehicles in HeLa cells, leading to productive transfection.
    ur Rehman Z; Hoekstra D; Zuhorn IS
    J Control Release; 2011 Nov; 156(1):76-84. PubMed ID: 21787817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the role of free polycationic chains in polycation gene carriers by free chains of polyethylenimine or N,N,N-trimethyl chitosan plus a certain polyplex.
    Xu T; Liu W; Wang S; Shao Z
    Int J Nanomedicine; 2014; 9():3231-45. PubMed ID: 25061299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyethylene glycol and octa-arginine dual-functionalized nanographene oxide: an optimization for efficient nucleic acid delivery.
    Imani R; Prakash S; Vali H; Faghihi S
    Biomater Sci; 2018 May; 6(6):1636-1650. PubMed ID: 29757340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Triple-Fluorophore-Labeled Nucleic Acid pH Nanosensor to Investigate Non-viral Gene Delivery.
    Wilson DR; Routkevitch D; Rui Y; Mosenia A; Wahlin KJ; Quinones-Hinojosa A; Zack DJ; Green JJ
    Mol Ther; 2017 Jul; 25(7):1697-1709. PubMed ID: 28479046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry.
    Bishop CJ; Majewski RL; Guiriba TR; Wilson DR; Bhise NS; Quiñones-Hinojosa A; Green JJ
    Acta Biomater; 2016 Jun; 37():120-30. PubMed ID: 27019146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular trafficking and photochemical internalization of cell penetrating peptide linked cargo proteins: a dual fluorescent labeling study.
    Gillmeister MP; Betenbaugh MJ; Fishman PS
    Bioconjug Chem; 2011 Apr; 22(4):556-66. PubMed ID: 21405111
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.