BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 34543447)

  • 1. It's a worm-eat-worm world: Consumption of parasite free-living stages protects hosts and benefits predators.
    Hobart BK; Moss WE; McDevitt-Galles T; Stewart Merrill TE; Johnson PTJ
    J Anim Ecol; 2022 Jan; 91(1):35-45. PubMed ID: 34543447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The enemy of my enemy is my friend: Consumption of parasite infectious stages benefits hosts and predators depending on transmission mode.
    Koprivnikar J
    J Anim Ecol; 2022 Jan; 91(1):4-7. PubMed ID: 35014041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How predator and parasite size interact to determine consumption of infectious stages.
    McDevitt-Galles T; Carpenter SA; Koprivnikar J; Johnson PTJ
    Oecologia; 2021 Nov; 197(3):551-564. PubMed ID: 34405300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host density increases parasite recruitment but decreases host risk in a snail-trematode system.
    Buck JC; Hechinger RF; Wood AC; Stewart TE; Kuris AM; Lafferty KD
    Ecology; 2017 Aug; 98(8):2029-2038. PubMed ID: 28518406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population dynamics of Chaetogaster limnaei (Oligochaeta: Naididae) in the field populations of freshwater snails and its implications as a potential regulator of trematode larvae community.
    Ibrahim MM
    Parasitol Res; 2007 Jun; 101(1):25-33. PubMed ID: 17252272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomass and productivity of trematode parasites in pond ecosystems.
    Preston DL; Orlofske SA; Lambden JP; Johnson PT
    J Anim Ecol; 2013 May; 82(3):509-17. PubMed ID: 23488451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parasite predators exhibit a rapid numerical response to increased parasite abundance and reduce transmission to hosts.
    Hopkins SR; Wyderko JA; Sheehy RR; Belden LK; Wojdak JM
    Ecol Evol; 2013 Nov; 3(13):4427-38. PubMed ID: 24340184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Associations between two trematode parasites, an ectosymbiotic annelid, and Thiara (Tarebia) granifera (Gastropoda) in Jamaica.
    McKoy SA; Hyslop EJ; Robinson RD
    J Parasitol; 2011 Oct; 97(5):828-32. PubMed ID: 21561331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trematode parasites exceed aquatic insect biomass in Oregon stream food webs.
    Preston DL; Layden TJ; Segui LM; Falke LP; Brant SV; Novak M
    J Anim Ecol; 2021 Mar; 90(3):766-775. PubMed ID: 33368227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atrazine reduces the transmission of an amphibian trematode by altering snail and ostracod host-parasite interactions.
    Gustafson KD; Belden JB; Bolek MG
    Parasitol Res; 2016 Apr; 115(4):1583-94. PubMed ID: 26762862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. It's a predator-eat-parasite world: how characteristics of predator, parasite and environment affect consumption.
    Orlofske SA; Jadin RC; Johnson PT
    Oecologia; 2015 Jun; 178(2):537-47. PubMed ID: 25648648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consumption of trematode parasite infectious stages: from conceptual synthesis to future research agenda.
    Koprivnikar J; Thieltges DW; Johnson PTJ
    J Helminthol; 2023 Mar; 97():e33. PubMed ID: 36971341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex interactions among a nematode parasite (Daubaylia potomaca), a commensalistic annelid (Chaetogaster limnaei limnaei), and trematode parasites in a snail host (Helisoma anceps).
    Zimmermann MR; Luth KE; Esch GW
    J Parasitol; 2011 Oct; 97(5):788-91. PubMed ID: 21506797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of predation risk on parasite transmission from first to second intermediate trematode hosts.
    Cornelius A; Buschbaum C; Khosravi M; Waser AM; Wegner KM; Thieltges DW
    J Anim Ecol; 2023 May; 92(5):991-1000. PubMed ID: 36994669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bottom-up and trait-mediated effects of resource quality on amphibian parasitism.
    Stephens JP; Altman KA; Berven KA; Tiegs SD; Raffel TR
    J Anim Ecol; 2017 Mar; 86(2):305-315. PubMed ID: 28027571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tranmission pattern differences of miracidia and cercariae larval stages of digenetic trematode parasites.
    Zimmermann MR; Luth KE; Esch GW
    Acta Parasitol; 2016 Dec; 61(4):680-688. PubMed ID: 27787211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of light on the trematode Himasthla elongata: from cercarial behaviour to infection success.
    Correia S; Freitas R; de Montaudouin X; Magalhães L
    Dis Aquat Organ; 2021 Sep; 146():23-28. PubMed ID: 34498607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Chaetogaster limnaei in the dynamics of trematode transmission in natural populations of freshwater snails.
    Fashuyi SA; Williams MO
    Z Parasitenkd; 1977 Dec; 54(1):55-60. PubMed ID: 602368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cercarial trematodes in freshwater snails from Bangkok, Thailand: prevalence, morphological and molecular studies and human parasite perspective.
    Wiroonpan P; Chontananarth T; Purivirojkul W
    Parasitology; 2021 Mar; 148(3):366-383. PubMed ID: 33100233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of trematode infections on periphyton grazing rates of freshwater snails.
    Vivas Muñoz JC; Hilt S; Horák P; Knopf K
    Parasitol Res; 2018 Nov; 117(11):3547-3555. PubMed ID: 30173340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.