BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34543483)

  • 1. Genomic evolution and the impact of SLIT2 mutation in relapsed intrahepatic cholangiocarcinoma.
    Zhou SL; Luo CB; Song CL; Zhou ZJ; Xin HY; Hu ZQ; Sun RQ; Fan J; Zhou J
    Hepatology; 2022 Apr; 75(4):831-846. PubMed ID: 34543483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma.
    Dong LQ; Shi Y; Ma LJ; Yang LX; Wang XY; Zhang S; Wang ZC; Duan M; Zhang Z; Liu LZ; Zheng BH; Ding ZB; Ke AW; Gao DM; Yuan K; Zhou J; Fan J; Xi R; Gao Q
    J Hepatol; 2018 Jul; 69(1):89-98. PubMed ID: 29551704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic profiling of intrahepatic cholangiocarcinoma: refining prognosis and identifying therapeutic targets.
    Zhu AX; Borger DR; Kim Y; Cosgrove D; Ejaz A; Alexandrescu S; Groeschl RT; Deshpande V; Lindberg JM; Ferrone C; Sempoux C; Yau T; Poon R; Popescu I; Bauer TW; Gamblin TC; Gigot JF; Anders RA; Pawlik TM
    Ann Surg Oncol; 2014 Nov; 21(12):3827-34. PubMed ID: 24889489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients.
    Gao Q; Zhao YJ; Wang XY; Guo WJ; Gao S; Wei L; Shi JY; Shi GM; Wang ZC; Zhang YN; Shi YH; Ding J; Ding ZB; Ke AW; Dai Z; Wu FZ; Wang H; Qiu ZP; Chen ZA; Zhang ZF; Qiu SJ; Zhou J; He XH; Fan J
    Gastroenterology; 2014 May; 146(5):1397-407. PubMed ID: 24503127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased roundabout 1 expression promotes development of intrahepatic cholangiocarcinoma.
    Mano Y; Aishima S; Fukuhara T; Tanaka Y; Kubo Y; Motomura T; Toshima T; Iguchi T; Shirabe K; Maehara Y; Oda Y
    Hum Pathol; 2013 Nov; 44(11):2419-26. PubMed ID: 23953227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrahepatic cholangiocarcinomas with IDH1/2 mutation-associated hypermethylation at selective genes and their clinicopathological features.
    Lee K; Song YS; Shin Y; Wen X; Kim Y; Cho NY; Bae JM; Kang GH
    Sci Rep; 2020 Sep; 10(1):15820. PubMed ID: 32978444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct clinical and prognostic implication of IDH1/2 mutation and other most frequent mutations in large duct and small duct subtypes of intrahepatic cholangiocarcinoma.
    Ma B; Meng H; Tian Y; Wang Y; Song T; Zhang T; Wu Q; Cui Y; Li H; Zhang W; Li Q
    BMC Cancer; 2020 Apr; 20(1):318. PubMed ID: 32293336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholangiocarcinoma Heterogeneity Revealed by Multigene Mutational Profiling: Clinical and Prognostic Relevance in Surgically Resected Patients.
    Ruzzenente A; Fassan M; Conci S; Simbolo M; Lawlor RT; Pedrazzani C; Capelli P; D'Onofrio M; Iacono C; Scarpa A; Guglielmi A
    Ann Surg Oncol; 2016 May; 23(5):1699-707. PubMed ID: 26717940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinicopathologic features, tumor immune microenvironment and genomic landscape of Epstein-Barr virus-associated intrahepatic cholangiocarcinoma.
    Huang YH; Zhang CZ; Huang QS; Yeong J; Wang F; Yang X; He YF; Zhang XL; Zhang H; Chen SL; Zheng YL; Deng R; Lin CS; Yang MM; Li Y; Jiang C; Kin-Wah Lee T; Ma S; Zeng MS; Yun JP
    J Hepatol; 2021 Apr; 74(4):838-849. PubMed ID: 33212090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IDH Mutation Subgroup Status Associates with Intratumor Heterogeneity and the Tumor Microenvironment in Intrahepatic Cholangiocarcinoma.
    Xiang X; Liu Z; Zhang C; Li Z; Gao J; Zhang C; Cao Q; Cheng J; Liu H; Chen D; Cheng Q; Zhang N; Xue R; Bai F; Zhu J
    Adv Sci (Weinh); 2021 Sep; 8(17):e2101230. PubMed ID: 34250753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anlotinib suppresses tumor progression via blocking the VEGFR2/PI3K/AKT cascade in intrahepatic cholangiocarcinoma.
    Song F; Hu B; Cheng JW; Sun YF; Zhou KQ; Wang PX; Guo W; Zhou J; Fan J; Chen Z; Yang XR
    Cell Death Dis; 2020 Jul; 11(7):573. PubMed ID: 32709873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutated EPHA2 is a target for combating lymphatic metastasis in intrahepatic cholangiocarcinoma.
    Sheng Y; Wei J; Zhang Y; Gao X; Wang Z; Yang J; Yan S; Zhu Y; Zhang Z; Xu D; Wang C; Zheng Y; Dong Q; Qin L
    Int J Cancer; 2019 May; 144(10):2440-2452. PubMed ID: 30412282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driver mutations of intrahepatic cholangiocarcinoma shape clinically relevant genomic clusters with distinct molecular features and therapeutic vulnerabilities.
    Wang XY; Zhu WW; Wang Z; Huang JB; Wang SH; Bai FM; Li TE; Zhu Y; Zhao J; Yang X; Lu L; Zhang JB; Jia HL; Dong QZ; Chen JH; Andersen JB; Ye D; Qin LX
    Theranostics; 2022; 12(1):260-276. PubMed ID: 34987644
    [No Abstract]   [Full Text] [Related]  

  • 14. Two classes of intrahepatic cholangiocarcinoma defined by relative abundance of mutations and copy number alterations.
    Kim YH; Hong EK; Kong SY; Han SS; Kim SH; Rhee JK; Hwang SK; Park SJ; Kim TM
    Oncotarget; 2016 Apr; 7(17):23825-36. PubMed ID: 27009864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive analysis of genomic mutation signature and tumor mutation burden for prognosis of intrahepatic cholangiocarcinoma.
    Zhang R; Li Q; Fu J; Jin Z; Su J; Zhang J; Chen C; Geng Z; Zhang D
    BMC Cancer; 2021 Feb; 21(1):112. PubMed ID: 33535978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New routes to targeted therapy of intrahepatic cholangiocarcinomas revealed by next-generation sequencing.
    Ross JS; Wang K; Gay L; Al-Rohil R; Rand JV; Jones DM; Lee HJ; Sheehan CE; Otto GA; Palmer G; Yelensky R; Lipson D; Morosini D; Hawryluk M; Catenacci DV; Miller VA; Churi C; Ali S; Stephens PJ
    Oncologist; 2014 Mar; 19(3):235-42. PubMed ID: 24563076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KRAS mutation in intrahepatic cholangiocarcinoma: Linkage with metastasis-free survival and reduced E-cadherin expression.
    Tanaka M; Kunita A; Yamagishi M; Katoh H; Ishikawa S; Yamamoto H; Abe J; Arita J; Hasegawa K; Shibata T; Ushiku T
    Liver Int; 2022 Oct; 42(10):2329-2340. PubMed ID: 35833881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BAP1 acts as a tumor suppressor in intrahepatic cholangiocarcinoma by modulating the ERK1/2 and JNK/c-Jun pathways.
    Chen XX; Yin Y; Cheng JW; Huang A; Hu B; Zhang X; Sun YF; Wang J; Wang YP; Ji Y; Qiu SJ; Fan J; Zhou J; Yang XR
    Cell Death Dis; 2018 Oct; 9(10):1036. PubMed ID: 30305612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein tyrosine phosphatase PTP4A1 promotes proliferation and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma via the PI3K/AKT pathway.
    Liu LZ; He YZ; Dong PP; Ma LJ; Wang ZC; Liu XY; Duan M; Yang LX; Shi JY; Zhou J; Fan J; Gao Q; Wang XY
    Oncotarget; 2016 Nov; 7(46):75210-75220. PubMed ID: 27655691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of downregulation of WWOX with poor prognosis in patients with intrahepatic cholangiocarcinoma after curative resection.
    Huang C; Tian Y; Peng R; Zhang C; Wang D; Han S; Jiao C; Wang X; Zhang H; Wang Y; Li X
    J Gastroenterol Hepatol; 2015 Feb; 30(2):421-33. PubMed ID: 25168293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.