These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 34543818)
1. Catalytic hydrogenolysis of alkali lignin in supercritical ethanol over copper monometallic catalyst supported on a chromium-based metal-organic framework for the efficient production of aromatic monomers. Tran MH; Phan DP; Nguyen TH; Kim HB; Kim J; Park ED; Lee EY Bioresour Technol; 2021 Dec; 342():125941. PubMed ID: 34543818 [TBL] [Abstract][Full Text] [Related]
2. Catalytic hydrogenolysis of lignin in ethanol/isopropanol over an activated carbon supported nickel-copper catalyst. Cheng C; Li P; Yu W; Shen D; Gu S Bioresour Technol; 2021 Jan; 319():124238. PubMed ID: 33254461 [TBL] [Abstract][Full Text] [Related]
4. Catalytic hydrotreatment of kraft lignin into aromatic alcohols over nickel-rhenium supported on niobium oxide catalyst. Kong L; Zhang L; Gu J; Gou L; Xie L; Wang Y; Dai L Bioresour Technol; 2020 Mar; 299():122582. PubMed ID: 31877480 [TBL] [Abstract][Full Text] [Related]
5. Production of Aromatic Compounds by Catalytic Depolymerization of Technical and Downstream Biorefinery Lignins. Cornejo A; Bimbela F; Moreira R; Hablich K; García-Yoldi Í; Maisterra M; Portugal A; Gandía LM; Martínez-Merino V Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32962141 [TBL] [Abstract][Full Text] [Related]
6. Mild depolymerization of the sinocalamus oldhami alkali lignin to phenolic monomer with base and activated carbon supported nickel-tungsten carbide catalyst composite system. Lin X; Chen L; Li H; Lv Y; Liu Y; Lu X; Liu M Bioresour Technol; 2021 Aug; 333():125136. PubMed ID: 33872995 [TBL] [Abstract][Full Text] [Related]
7. Review of the application of bimetallic catalysts coupled with internal hydrogen donor for catalytic hydrogenolysis of lignin to produce phenolic fine chemicals. Ewuzie RN; Genza JR; Abdullah AZ Int J Biol Macromol; 2024 Apr; 265(Pt 2):131084. PubMed ID: 38521312 [TBL] [Abstract][Full Text] [Related]
8. Activity and product distribution in Ni-Co and Ni-Cu catalyst-mediated lignin depolymerization into phenolic substances with isopropanol H-donating solvent. Ewuzie RN; Genza JR; Abdullah AZ Environ Sci Pollut Res Int; 2024 Aug; 31(37):49727-49743. PubMed ID: 39080163 [TBL] [Abstract][Full Text] [Related]
9. Catalytic depolymerization of Kraft lignin to high yield alkylated-phenols over CoMo/SBA-15 catalyst in supercritical ethanol. Rana M; Ghosh S; Nshizirungu T; Park JH RSC Adv; 2023 Oct; 13(43):30022-30039. PubMed ID: 37842670 [TBL] [Abstract][Full Text] [Related]
10. High-Efficient and Recyclable Magnetic Separable Catalyst for Catalytic Hydrogenolysis of β-O-4 Linkage in Lignin. Huang J; Zhao C; Lu F Polymers (Basel); 2018 Sep; 10(10):. PubMed ID: 30961002 [TBL] [Abstract][Full Text] [Related]
11. Lignin-to-chemicals: Application of catalytic hydrogenolysis of lignin to produce phenols and terephthalic acid via metal-based catalysts. Tang D; Huang X; Tang W; Jin Y Int J Biol Macromol; 2021 Nov; 190():72-85. PubMed ID: 34480907 [TBL] [Abstract][Full Text] [Related]
12. Impact of lignin structure on oil production via hydroprocessing with a copper-doped porous metal oxide catalyst. Gillet S; Petitjean L; Aguedo M; Lam CH; Blecker C; Anastas PT Bioresour Technol; 2017 Jun; 233():216-226. PubMed ID: 28282608 [TBL] [Abstract][Full Text] [Related]
13. Selective production of phenolic monomers via high efficient lignin depolymerization with a carbon based nickel-iron-molybdenum carbide catalyst under mild conditions. Yan B; Lin X; Chen Z; Cai Q; Zhang S Bioresour Technol; 2021 Feb; 321():124503. PubMed ID: 33310408 [TBL] [Abstract][Full Text] [Related]
14. Catalytic hydrothermal liquefaction of alkali lignin for monophenols production over homologous biochar-supported copper catalysts in water. Zhang J; Ge Y; Li Z Int J Biol Macromol; 2023 Dec; 253(Pt 1):126656. PubMed ID: 37660845 [TBL] [Abstract][Full Text] [Related]
15. Effect of cobalt on titania, ceria and zirconia oxide supported catalysts on the oxidative depolymerization of prot and alkali lignin. Kumar A; Biswas B; Bhaskar T Bioresour Technol; 2020 Mar; 299():122589. PubMed ID: 31865149 [TBL] [Abstract][Full Text] [Related]
16. Effect of catalyst and reaction conditions on aromatic monomer yields, product distribution, and sugar yields during lignin hydrogenolysis of silver birch wood. Phongpreecha T; Christy KF; Singh SK; Hao P; Hodge DB Bioresour Technol; 2020 Nov; 316():123907. PubMed ID: 32739581 [TBL] [Abstract][Full Text] [Related]
17. Production of vanillin via oxidation depolymerization of lignin over Fe- and Mn-modified TS-1 zeolites. Wan Z; Zhang H; Niu M; Guo Y; Li H Int J Biol Macromol; 2024 Jun; 272(Pt 1):132922. PubMed ID: 38844292 [TBL] [Abstract][Full Text] [Related]
18. Catalytic depolymerization of lignin in supercritical ethanol. Huang X; Korányi TI; Boot MD; Hensen EJ ChemSusChem; 2014 Aug; 7(8):2276-88. PubMed ID: 24867490 [TBL] [Abstract][Full Text] [Related]
19. Lignin-First Depolymerization of Lignocellulose into Monophenols over Carbon Nanotube-Supported Ruthenium: Impact of Lignin Sources. Su S; Xiao LP; Chen X; Wang S; Chen XH; Guo Y; Zhai SR ChemSusChem; 2022 Jun; 15(12):e202200365. PubMed ID: 35438245 [TBL] [Abstract][Full Text] [Related]