These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 34543912)

  • 1. Recurrent inference machines as inverse problem solvers for MR relaxometry.
    Sabidussi ER; Klein S; Caan MWA; Bazrafkan S; den Dekker AJ; Sijbers J; Niessen WJ; Poot DHJ
    Med Image Anal; 2021 Dec; 74():102220. PubMed ID: 34543912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streamlined magnetic resonance fingerprinting: Fast whole-brain coverage with deep-learning based parameter estimation.
    Khajehim M; Christen T; Tam F; Graham SJ
    Neuroimage; 2021 Sep; 238():118237. PubMed ID: 34091035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrent inference machines for reconstructing heterogeneous MRI data.
    Lønning K; Putzky P; Sonke JJ; Reneman L; Caan MWA; Welling M
    Med Image Anal; 2019 Apr; 53():64-78. PubMed ID: 30703579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated Photoacoustic Tomography Reconstruction via Recurrent Inference Machines.
    Yang C; Lan H; Gao F
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6371-6374. PubMed ID: 31947300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unified model for reconstruction and R
    Zhang C; Karkalousos D; Bazin PL; Coolen BF; Vrenken H; Sonke JJ; Forstmann BU; Poot DHJ; Caan MWA
    Neuroimage; 2022 Dec; 264():119680. PubMed ID: 36240989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How stable is quantitative MRI? - Assessment of intra- and inter-scanner-model reproducibility using identical acquisition sequences and data analysis programs.
    Gracien RM; Maiworm M; Brüche N; Shrestha M; Nöth U; Hattingen E; Wagner M; Deichmann R
    Neuroimage; 2020 Feb; 207():116364. PubMed ID: 31740340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid MR relaxometry using deep learning: An overview of current techniques and emerging trends.
    Feng L; Ma D; Liu F
    NMR Biomed; 2022 Apr; 35(4):e4416. PubMed ID: 33063400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data.
    Moya-Sáez E; Peña-Nogales Ó; Luis-García R; Alberola-López C
    Comput Methods Programs Biomed; 2021 Oct; 210():106371. PubMed ID: 34525411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping.
    Liu F; Feng L; Kijowski R
    Magn Reson Med; 2019 Jul; 82(1):174-188. PubMed ID: 30860285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method.
    Jun Y; Shin H; Eo T; Kim T; Hwang D
    Med Image Anal; 2021 May; 70():102017. PubMed ID: 33721693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technical Note: Simultaneous segmentation and relaxometry for MRI through multitask learning.
    Cao P; Liu J; Tang S; Leynes AP; Lupo JM; Xu D; Larson PEZ
    Med Phys; 2019 Oct; 46(10):4610-4621. PubMed ID: 31396973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep neural network for fast and accurate scatter estimation in quantitative SPECT/CT under challenging scatter conditions.
    Xiang H; Lim H; Fessler JA; Dewaraja YK
    Eur J Nucl Med Mol Imaging; 2020 Dec; 47(13):2956-2967. PubMed ID: 32415551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. dtiRIM: A generalisable deep learning method for diffusion tensor imaging.
    Sabidussi ER; Klein S; Jeurissen B; Poot DHJ
    Neuroimage; 2023 Apr; 269():119900. PubMed ID: 36702213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint system relaxometry (JSR) and Crámer-Rao lower bound optimization of sequence parameters: A framework for enhanced precision of DESPOT T
    Teixeira RPAG; Malik SJ; Hajnal JV
    Magn Reson Med; 2018 Jan; 79(1):234-245. PubMed ID: 28303617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRzero - Automated discovery of MRI sequences using supervised learning.
    Loktyushin A; Herz K; Dang N; Glang F; Deshmane A; Weinmüller S; Doerfler A; Schölkopf B; Scheffler K; Zaiss M
    Magn Reson Med; 2021 Aug; 86(2):709-724. PubMed ID: 33755247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction.
    Qin C; Schlemper J; Caballero J; Price AN; Hajnal JV; Rueckert D
    IEEE Trans Med Imaging; 2019 Jan; 38(1):280-290. PubMed ID: 30080145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency analysis for quantitative MRI of T1 and T2 relaxometry methods.
    Leitão D; Teixeira RPAG; Price A; Uus A; Hajnal JV; Malik SJ
    Phys Med Biol; 2021 Jul; 66(15):. PubMed ID: 34192676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-scale residual network for accelerated radial MR parameter mapping.
    Fu Z; Mandava S; Keerthivasan MB; Li Z; Johnson K; Martin DR; Altbach MI; Bilgin A
    Magn Reson Imaging; 2020 Nov; 73():152-162. PubMed ID: 32882339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of shortened acquisition time on accuracy and precision of quantitative estimates of organ activity.
    He B; Frey EC
    Med Phys; 2010 Apr; 37(4):1807-15. PubMed ID: 20443503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.