BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 34543913)

  • 21. Image2Flow: A proof-of-concept hybrid image and graph convolutional neural network for rapid patient-specific pulmonary artery segmentation and CFD flow field calculation from 3D cardiac MRI data.
    Yao T; Pajaziti E; Quail M; Schievano S; Steeden J; Muthurangu V
    PLoS Comput Biol; 2024 Jun; 20(6):e1012231. PubMed ID: 38900817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A distance map regularized CNN for cardiac cine MR image segmentation.
    Dangi S; Linte CA; Yaniv Z
    Med Phys; 2019 Dec; 46(12):5637-5651. PubMed ID: 31598971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A high-performance deep-learning-based pipeline for whole-brain vasculature segmentation at the capillary resolution.
    Li Y; Liu X; Jia X; Jiang T; Wu J; Zhang Q; Li J; Li X; Li A
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36946294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ground-truth-free deep learning for artefacts reduction in 2D radial cardiac cine MRI using a synthetically generated dataset.
    Chen D; Schaeffter T; Kolbitsch C; Kofler A
    Phys Med Biol; 2021 Apr; 66(9):. PubMed ID: 33770783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D deeply supervised network for automated segmentation of volumetric medical images.
    Dou Q; Yu L; Chen H; Jin Y; Yang X; Qin J; Heng PA
    Med Image Anal; 2017 Oct; 41():40-54. PubMed ID: 28526212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture.
    Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LinFlo-Net: A Two-Stage Deep Learning Method to Generate Simulation Ready Meshes of the Heart.
    Narayanan A; Kong F; Shadden S
    J Biomech Eng; 2024 Jul; 146(7):. PubMed ID: 38258957
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anatomically aided PET image reconstruction using deep neural networks.
    Xie Z; Li T; Zhang X; Qi W; Asma E; Qi J
    Med Phys; 2021 Sep; 48(9):5244-5258. PubMed ID: 34129690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
    Zhou X; Takayama R; Wang S; Hara T; Fujita H
    Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An application of cascaded 3D fully convolutional networks for medical image segmentation.
    Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K
    Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid inference of personalised left-ventricular meshes by deformation-based differentiable mesh voxelization.
    Joyce T; Buoso S; Stoeck CT; Kozerke S
    Med Image Anal; 2022 Jul; 79():102445. PubMed ID: 35468554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automating Model Generation for Image-Based Cardiac Flow Simulation.
    Kong F; Shadden SC
    J Biomech Eng; 2020 Nov; 142(11):. PubMed ID: 32766785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images.
    Cui Y; Zhang G; Liu Z; Xiong Z; Hu J
    Med Biol Eng Comput; 2019 Sep; 57(9):2027-2043. PubMed ID: 31346949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-resolution 3D MR Fingerprinting using parallel imaging and deep learning.
    Chen Y; Fang Z; Hung SC; Chang WT; Shen D; Lin W
    Neuroimage; 2020 Feb; 206():116329. PubMed ID: 31689536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep learning for whole-body medical image generation.
    Schaefferkoetter J; Yan J; Moon S; Chan R; Ortega C; Metser U; Berlin A; Veit-Haibach P
    Eur J Nucl Med Mol Imaging; 2021 Nov; 48(12):3817-3826. PubMed ID: 34021779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
    Fantini I; Yasuda C; Bento M; Rittner L; Cendes F; Lotufo R
    Comput Med Imaging Graph; 2021 Jun; 90():101897. PubMed ID: 33770561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.