BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34544068)

  • 1. Efficient uncertainty quantification for Monte Carlo dose calculations using importance (re-)weighting.
    Stammer P; Burigo L; Jäkel O; Frank M; Wahl N
    Phys Med Biol; 2021 Oct; 66(20):. PubMed ID: 34544068
    [No Abstract]   [Full Text] [Related]  

  • 2. MOQUI: an open-source GPU-based Monte Carlo code for proton dose calculation with efficient data structure.
    Lee H; Shin J; Verburg JM; Bobić M; Winey B; Schuemann J; Paganetti H
    Phys Med Biol; 2022 Aug; 67(17):. PubMed ID: 35926482
    [No Abstract]   [Full Text] [Related]  

  • 3. Latent uncertainties of the precalculated track Monte Carlo method.
    Renaud MA; Roberge D; Seuntjens J
    Med Phys; 2015 Jan; 42(1):479-90. PubMed ID: 25563287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy.
    Testa M; Schümann J; Lu HM; Shin J; Faddegon B; Perl J; Paganetti H
    Med Phys; 2013 Dec; 40(12):121719. PubMed ID: 24320505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of analytical and sampling-based uncertainty propagation in intensity-modulated proton therapy.
    Wahl N; Hennig P; Wieser HP; Bangert M
    Phys Med Biol; 2017 Jun; 62(14):5790-5807. PubMed ID: 28649976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of setup and range uncertainties on TCP and NTCP following VMAT or IMPT of oropharyngeal cancer patients.
    Hamming-Vrieze O; Depauw N; Craft DL; Chan AW; Rasch CRN; Verheij M; Sonke JJ; Kooy HM
    Phys Med Biol; 2019 Apr; 64(9):095001. PubMed ID: 30921775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractionated Lung IMPT Treatments: Sensitivity to Setup Uncertainties and Motion Effects Based on Single-Field Homogeneity.
    Dowdell S; Grassberger C; Sharp G; Paganetti H
    Technol Cancer Res Treat; 2016 Oct; 15(5):689-96. PubMed ID: 26208837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A benchmarking method to evaluate the accuracy of a commercial proton monte carlo pencil beam scanning treatment planning system.
    Lin L; Huang S; Kang M; Hiltunen P; Vanderstraeten R; Lindberg J; Siljamaki S; Wareing T; Davis I; Barnett A; McGhee J; Simone CB; Solberg TD; McDonough JE; Ainsley C
    J Appl Clin Med Phys; 2017 Mar; 18(2):44-49. PubMed ID: 28300385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical Note: Monte Carlo methods to comprehensively evaluate the robustness of 4D treatments in proton therapy.
    Souris K; Barragan Montero A; Janssens G; Di Perri D; Sterpin E; Lee JA
    Med Phys; 2019 Oct; 46(10):4676-4684. PubMed ID: 31376305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent dose verification system with Monte Carlo simulations using TOPAS for passive scattering proton therapy at the National Cancer Center in Korea.
    Shin WG; Testa M; Kim HS; Jeong JH; Lee SB; Kim YJ; Min CH
    Phys Med Biol; 2017 Sep; 62(19):7598-7616. PubMed ID: 28809759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A GPU-based fast Monte Carlo code that supports proton transport in magnetic field for radiation therapy.
    Li S; Cheng B; Wang Y; Pei X; Xu XG
    J Appl Clin Med Phys; 2024 Jan; 25(1):e14208. PubMed ID: 37987549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The clinical impact of uncertainties in the mean excitation energy of human tissues during proton therapy.
    Besemer A; Paganetti H; Bednarz B
    Phys Med Biol; 2013 Feb; 58(4):887-902. PubMed ID: 23337713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the initial beam parameters in Monte Carlo linac simulation.
    Aljarrah K; Sharp GC; Neicu T; Jiang SB
    Med Phys; 2006 Apr; 33(4):850-8. PubMed ID: 16696460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometrical splitting technique to improve the computational efficiency in Monte Carlo calculations for proton therapy.
    Ramos-Méndez J; Perl J; Faddegon B; Schümann J; Paganetti H
    Med Phys; 2013 Apr; 40(4):041718. PubMed ID: 23556888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.
    Tian Z; Li Y; Folkerts M; Shi F; Jiang SB; Jia X
    Phys Med Biol; 2015 Oct; 60(20):7941-67. PubMed ID: 26418216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ARCHERRT - a GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: software development and application to helical tomotherapy.
    Su L; Yang Y; Bednarz B; Sterpin E; Du X; Liu T; Ji W; Xu XG
    Med Phys; 2014 Jul; 41(7):071709. PubMed ID: 24989378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation and clinical implementation of an accurate Monte Carlo code for pencil beam scanning proton therapy.
    Huang S; Kang M; Souris K; Ainsley C; Solberg TD; McDonough JE; Simone CB; Lin L
    J Appl Clin Med Phys; 2018 Sep; 19(5):558-572. PubMed ID: 30058170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The energy margin strategy for reducing dose variation due to setup uncertainty in intensity modulated proton therapy (IMPT) delivered with distal edge tracking (DET).
    Zhang M; Flynn RT; Mo X; Mackie TR
    J Appl Clin Med Phys; 2012 Sep; 13(5):3863. PubMed ID: 22955652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo proton dose calculations using a radiotherapy specific dual-energy CT scanner for tissue segmentation and range assessment.
    Almeida IP; Schyns LEJR; Vaniqui A; van der Heyden B; Dedes G; Resch AF; Kamp F; Zindler JD; Parodi K; Landry G; Verhaegen F
    Phys Med Biol; 2018 May; 63(11):115008. PubMed ID: 29616662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of nonelastic interactions.
    Wan Chan Tseung H; Ma J; Beltran C
    Med Phys; 2015 Jun; 42(6):2967-78. PubMed ID: 26127050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.