These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 34544295)
1. Towards optimal toe-clearance in synthesizing polycentric prosthetic knee mechanism. Marisami P; Venkatachalam R Comput Methods Biomech Biomed Engin; 2022 May; 25(6):656-667. PubMed ID: 34544295 [TBL] [Abstract][Full Text] [Related]
2. The effects of walking speed on minimum toe clearance and on the temporal relationship between minimum clearance and peak swing-foot velocity in unilateral trans-tibial amputees. De Asha AR; Buckley JG Prosthet Orthot Int; 2015 Apr; 39(2):120-5. PubMed ID: 24469428 [TBL] [Abstract][Full Text] [Related]
3. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking. Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical responses of young adults with unilateral transfemoral amputation using two types of mechanical stance control prosthetic knee joints. Andrysek J; García D; Rozbaczylo C; Alvarez-Mitchell C; Valdebenito R; Rotter K; Wright FV Prosthet Orthot Int; 2020 Oct; 44(5):314-322. PubMed ID: 32389076 [TBL] [Abstract][Full Text] [Related]
5. A method for performance comparison of polycentric knees and its application to the design of a knee for developing countries. Anand TS; Sujatha S Prosthet Orthot Int; 2017 Aug; 41(4):402-411. PubMed ID: 27435740 [TBL] [Abstract][Full Text] [Related]
6. Knee Swing Phase Flexion Resistance Affects Several Key Features of Leg Swing Important to Safe Transfemoral Prosthetic Gait. Kent JA; Arelekatti VNM; Petelina NT; Johnson WB; Brinkmann JT; Winter AG; Major MJ IEEE Trans Neural Syst Rehabil Eng; 2021; 29():965-973. PubMed ID: 34018934 [TBL] [Abstract][Full Text] [Related]
7. The effects of laterality on obstacle crossing performance in unilateral trans-tibial amputees. De Asha AR; Buckley JG Clin Biomech (Bristol); 2015 May; 30(4):343-6. PubMed ID: 25779690 [TBL] [Abstract][Full Text] [Related]
8. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial. Cao W; Yu H; Zhao W; Meng Q; Chen W Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741 [TBL] [Abstract][Full Text] [Related]
9. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis. Ingraham KA; Fey NP; Simon AM; Hargrove LJ PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889 [TBL] [Abstract][Full Text] [Related]
10. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees. Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984 [TBL] [Abstract][Full Text] [Related]
11. Maximum Swing Flexion or Gait Symmetry: A Comparative Evaluation of Control Targets on Metabolic Energy Expenditure of Amputee Using Intelligent Prosthetic Knee. Cao W; Zhao W; Yu H; Chen W; Meng Q Biomed Res Int; 2018; 2018():2898546. PubMed ID: 30584532 [TBL] [Abstract][Full Text] [Related]
12. Contributions of knee swing initiation and ankle plantar flexion to the walking mechanics of amputees using a powered prosthesis. Ingraham KA; Fey NP; Simon AM; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2504-7. PubMed ID: 25570499 [TBL] [Abstract][Full Text] [Related]
13. Equivalent system based inverse dynamics analysis of transfemoral prosthetic legs: Validation and application. Sudeesh S; Shunmugam MS; Sujatha S Proc Inst Mech Eng H; 2023 Apr; 237(4):467-480. PubMed ID: 36855780 [TBL] [Abstract][Full Text] [Related]
14. Vaulting quantification during level walking of transfemoral amputees. Drevelle X; Villa C; Bonnet X; Loiret I; Fodé P; Pillet H Clin Biomech (Bristol); 2014 Jun; 29(6):679-83. PubMed ID: 24835798 [TBL] [Abstract][Full Text] [Related]
16. Investigating the Effect of Real-Time Center of Pressure Feedback Training on the Swing Phase of Lower Limb Kinematics in Transfemoral Prostheses With SACH Foot. Tiwari A; Kujur A; Kumar J; Joshi D J Biomech Eng; 2022 Jul; 144(7):. PubMed ID: 34951460 [TBL] [Abstract][Full Text] [Related]
17. Using a Simple Walking Model to Optimize Transfemoral Prostheses for Prosthetic Limb Stability-A Preliminary Study. Pace A; Howard D; Gard SA; Major MJ IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3005-3012. PubMed ID: 33275584 [TBL] [Abstract][Full Text] [Related]
18. Development of four-bar polycentric knee joint with stance-phase knee flexion. Phoengsongkhro S; Tangpornprasert P; Yotnuengnit P; Samala M; Virulsri C Sci Rep; 2023 Dec; 13(1):22809. PubMed ID: 38129482 [TBL] [Abstract][Full Text] [Related]
19. Adding a toe joint to a prosthesis: walking biomechanics, energetics, and preference of individuals with unilateral below-knee limb loss. McDonald KA; Teater RH; Cruz JP; Kerr JT; Bastas G; Zelik KE Sci Rep; 2021 Jan; 11(1):1924. PubMed ID: 33479374 [TBL] [Abstract][Full Text] [Related]
20. Energy cost during ambulation in transfemoral amputees: a knee joint with a mechanical swing phase control vs a knee joint with a pneumatic swing phase control. Boonstra AM; Schrama J; Fidler V; Eisma WH Scand J Rehabil Med; 1995 Jun; 27(2):77-81. PubMed ID: 7569824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]