These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34544761)

  • 21. Awake ripples enhance emotional memory encoding in the human brain.
    Zhang H; Skelin I; Ma S; Paff M; Mnatsakanyan L; Yassa MA; Knight RT; Lin JJ
    Nat Commun; 2024 Jan; 15(1):215. PubMed ID: 38172140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hippocampal sharp waves and reactivation during awake states depend on repeated sequential experience.
    Jackson JC; Johnson A; Redish AD
    J Neurosci; 2006 Nov; 26(48):12415-26. PubMed ID: 17135403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Occurrence of Hippocampal Ripples is Associated with Activity Suppression in the Mediodorsal Thalamic Nucleus.
    Yang M; Logothetis NK; Eschenko O
    J Neurosci; 2019 Jan; 39(3):434-444. PubMed ID: 30459228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multisite Recording of Local Field Potentials in Awake, Free-Moving Mice.
    Mao X; Cao T; Li A
    Methods Mol Biol; 2018; 1820():169-177. PubMed ID: 29884946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sleep stage dynamics in neocortex and hippocampus.
    DurĂ¡n E; Oyanedel CN; Niethard N; Inostroza M; Born J
    Sleep; 2018 Jun; 41(6):. PubMed ID: 29893972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep learning-based feature extraction for prediction and interpretation of sharp-wave ripples in the rodent hippocampus.
    Navas-Olive A; Amaducci R; Jurado-Parras MT; Sebastian ER; de la Prida LM
    Elife; 2022 Sep; 11():. PubMed ID: 36062906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impedance Rhythms in Human Limbic System.
    Mivalt F; Kremen V; Sladky V; Cui J; Gregg NM; Balzekas I; Marks V; St Louis EK; Croarkin P; Lundstrom BN; Nelson N; Kim J; Hermes D; Messina S; Worrell S; Richner T; Brinkmann BH; Denison T; Miller KJ; Van Gompel J; Stead M; Worrell GA
    J Neurosci; 2023 Sep; 43(39):6653-6666. PubMed ID: 37620157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase correlation among rhythms present at different frequencies: spectral methods, application to microelectrode recordings from visual cortex and functional implications.
    Schanze T; Eckhorn R
    Int J Psychophysiol; 1997 Jun; 26(1-3):171-89. PubMed ID: 9203002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global forebrain dynamics predict rat behavioral states and their transitions.
    Gervasoni D; Lin SC; Ribeiro S; Soares ES; Pantoja J; Nicolelis MA
    J Neurosci; 2004 Dec; 24(49):11137-47. PubMed ID: 15590930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activity of human hippocampal formation and amygdala neurons during sleep.
    Ravagnati L; Halgren E; Babb TL; Crandall PH
    Sleep; 1979; 2(2):161-73. PubMed ID: 232562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stimulation of perforant path fibers induces LTP concurrently in amygdala and hippocampus in awake freely behaving rats.
    Blaise JH; Hartman RA
    Neural Plast; 2013; 2013():565167. PubMed ID: 23401801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A machine learning approach to characterize sequential movement-related states in premotor and motor cortices.
    DePass M; Falaki A; Quessy S; Dancause N; Cos I
    J Neurophysiol; 2022 May; 127(5):1348-1362. PubMed ID: 35171745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Painful laser stimuli induce directed functional interactions within and between the human amygdala and hippocampus.
    Liu CC; Shi CQ; Franaszczuk PJ; Crone NE; Schretlen D; Ohara S; Lenz FA
    Neuroscience; 2011 Mar; 178():208-17. PubMed ID: 21256929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unmasking local activity within local field potentials (LFPs) by removing distal electrical signals using independent component analysis.
    Whitmore NW; Lin SC
    Neuroimage; 2016 May; 132():79-92. PubMed ID: 26899209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. State-dependent and region-specific alterations of cerebellar connectivity across stable human wakefulness and NREM sleep states.
    Liu J; Zou G; Xu J; Zhou S; Qin L; Sun H; Zou Q; Gao JH
    Neuroimage; 2023 Feb; 266():119823. PubMed ID: 36535322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of hippocampal long-term potentiation by the amygdala: a synaptic mechanism linking emotion and memory.
    Abe K
    Jpn J Pharmacol; 2001 May; 86(1):18-22. PubMed ID: 11430468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glutamic acid and histamine-sensitive neurons in the ventral hippocampus and the basolateral amygdala of the rat: functional interaction on memory and learning processes.
    Alvarez EO; Ruarte MB
    Behav Brain Res; 2004 Jul; 152(2):209-19. PubMed ID: 15196788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequency- and state-dependent effects of hippocampal neural disinhibition on hippocampal local field potential oscillations in anesthetized rats.
    Gwilt M; Bauer M; Bast T
    Hippocampus; 2020 Oct; 30(10):1021-1043. PubMed ID: 32396678
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amygdala-hippocampal interactions in synaptic plasticity and memory formation.
    Roesler R; Parent MB; LaLumiere RT; McIntyre CK
    Neurobiol Learn Mem; 2021 Oct; 184():107490. PubMed ID: 34302951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single unit and population responses during inhibitory gating of striatal activity in freely moving rats.
    Cromwell HC; Klein A; Mears RP
    Neuroscience; 2007 Apr; 146(1):69-85. PubMed ID: 17321056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.