BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 34545248)

  • 1. A new era in functional genomics screens.
    Przybyla L; Gilbert LA
    Nat Rev Genet; 2022 Feb; 23(2):89-103. PubMed ID: 34545248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iCSDB: an integrated database of CRISPR screens.
    Choi A; Jang I; Han H; Kim MS; Choi J; Lee J; Cho SY; Jun Y; Lee C; Kim J; Lee B; Lee S
    Nucleic Acids Res; 2021 Jan; 49(D1):D956-D961. PubMed ID: 33137185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-based functional genomics for neurological disease.
    Kampmann M
    Nat Rev Neurol; 2020 Sep; 16(9):465-480. PubMed ID: 32641861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish.
    Prykhozhij SV; Caceres L; Berman JN
    Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding the noncoding genome via large-scale CRISPR screens.
    Shukla A; Huangfu D
    Curr Opin Genet Dev; 2018 Oct; 52():70-76. PubMed ID: 29913329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of Functional Genomics for Drug Discovery.
    Kabadi A; McDonnell E; Frank CL; Drowley L
    SLAS Discov; 2020 Sep; 25(8):823-842. PubMed ID: 32026742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies to Identify Genetic Variants Causing Infertility.
    Ding X; Schimenti JC
    Trends Mol Med; 2021 Aug; 27(8):792-806. PubMed ID: 33431240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging applications of genome-editing technology to examine functionality of GWAS-associated variants for complex traits.
    Smith AJP; Deloukas P; Munroe PB
    Physiol Genomics; 2018 Jul; 50(7):510-522. PubMed ID: 29652634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.
    Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Genomics for Cancer Drug Target Discovery.
    Haley B; Roudnicky F
    Cancer Cell; 2020 Jul; 38(1):31-43. PubMed ID: 32442401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target Discovery for Precision Medicine Using High-Throughput Genome Engineering.
    Guo X; Chitale P; Sanjana NE
    Adv Exp Med Biol; 2017; 1016():123-145. PubMed ID: 29130157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translating genomic insights into cardiovascular medicine: Opportunities and challenges of CRISPR-Cas9.
    Zhang Y; Karakikes I
    Trends Cardiovasc Med; 2021 Aug; 31(6):341-348. PubMed ID: 32603681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tag-seq: a convenient and scalable method for genome-wide specificity assessment of CRISPR/Cas nucleases.
    Huang H; Hu Y; Huang G; Ma S; Feng J; Wang D; Lin Y; Zhou J; Rong Z
    Commun Biol; 2021 Jul; 4(1):830. PubMed ID: 34215845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking genome variants to disease: scalable approaches to test the functional impact of human mutations.
    Findlay GM
    Hum Mol Genet; 2021 Oct; 30(R2):R187-R197. PubMed ID: 34338757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9.
    Korkmaz G; Lopes R; Ugalde AP; Nevedomskaya E; Han R; Myacheva K; Zwart W; Elkon R; Agami R
    Nat Biotechnol; 2016 Feb; 34(2):192-8. PubMed ID: 26751173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Engineering for Personalized Arthritis Therapeutics.
    Adkar SS; Brunger JM; Willard VP; Wu CL; Gersbach CA; Guilak F
    Trends Mol Med; 2017 Oct; 23(10):917-931. PubMed ID: 28887050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome editing for the reproduction and remedy of human diseases in mice.
    Hara S; Takada S
    J Hum Genet; 2018 Feb; 63(2):107-113. PubMed ID: 29180644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning gene networks underlying clinical phenotypes using SNP perturbation.
    McCarter C; Howrylak J; Kim S
    PLoS Comput Biol; 2020 Oct; 16(10):e1007940. PubMed ID: 33095769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens.
    Gasperini M; Hill AJ; McFaline-Figueroa JL; Martin B; Kim S; Zhang MD; Jackson D; Leith A; Schreiber J; Noble WS; Trapnell C; Ahituv N; Shendure J
    Cell; 2019 Jan; 176(1-2):377-390.e19. PubMed ID: 30612741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in Genomics for Drug Development.
    Spreafico R; Soriaga LB; Grosse J; Virgin HW; Telenti A
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32824125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.