These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34545441)

  • 1. Traumatic cervical spinal cord injury: relationship of MRI findings to initial neurological impairment.
    Jin C; Zhao L; Wu J; Jia L; Cheng L; Xie N
    Eur Spine J; 2021 Dec; 30(12):3666-3675. PubMed ID: 34545441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of Ultra-Early (< 12 h), Early (12-24 h), and Late (>24-138.5 h) Surgery with Magnetic Resonance Imaging-Confirmed Decompression in American Spinal Injury Association Impairment Scale Grades A, B, and C Cervical Spinal Cord Injury.
    Aarabi B; Akhtar-Danesh N; Chryssikos T; Shanmuganathan K; Schwartzbauer GT; Simard JM; Olexa J; Sansur CA; Crandall KM; Mushlin H; Kole MJ; Le EJ; Wessell AP; Pratt N; Cannarsa G; Lomangino C; Scarboro M; Aresco C; Oliver J; Caffes N; Carbine S; Mori K
    J Neurotrauma; 2020 Feb; 37(3):448-457. PubMed ID: 31310155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute Thoracolumbar Spinal Cord Injury: Relationship of Cord Compression to Neurological Outcome.
    Skeers P; Battistuzzo CR; Clark JM; Bernard S; Freeman BJC; Batchelor PE
    J Bone Joint Surg Am; 2018 Feb; 100(4):305-315. PubMed ID: 29462034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relevance of MRI for predicting neurological recovery following cervical traumatic spinal cord injury.
    Martineau J; Goulet J; Richard-Denis A; Mac-Thiong JM
    Spinal Cord; 2019 Oct; 57(10):866-873. PubMed ID: 31123335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramedullary Lesion Length on Postoperative Magnetic Resonance Imaging is a Strong Predictor of ASIA Impairment Scale Grade Conversion Following Decompressive Surgery in Cervical Spinal Cord Injury.
    Aarabi B; Sansur CA; Ibrahimi DM; Simard JM; Hersh DS; Le E; Diaz C; Massetti J; Akhtar-Danesh N
    Neurosurgery; 2017 Apr; 80(4):610-620. PubMed ID: 28362913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower Extremity Somatosensory Evoked Potentials Predict Functional Outcomes in Complete Traumatic Cervical Spinal Cord Injury.
    Chiu AK; Bustos SP; Hasan O; Henry LE; Oster BA; Ratanpal AS; Padovano R; Brush PL; Pease TJ; Smith RA; Jauregui JJ; Bivona LJ; Cavanaugh DL; Koh EY; Vaccaro AR; Ludwig SC
    World Neurosurg; 2024 Feb; 182():e301-e307. PubMed ID: 38008173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trends in Demographics and Markers of Injury Severity in Traumatic Cervical Spinal Cord Injury.
    Aarabi B; Albrecht JS; Simard JM; Chryssikos T; Schwartzbauer G; Sansur CA; Crandall K; Gertner M; Howie B; Wessell A; Cannarsa G; Caffes N; Oliver J; Shanmuganathan K; Olexa J; Lomangino CD; Scarboro M
    J Neurotrauma; 2021 Mar; 38(6):756-764. PubMed ID: 33353454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk Factors for Tracheostomy after Traumatic Cervical Spinal Cord Injury: A 10-Year Study of 456 Patients.
    Long PP; Sun DW; Zhang ZF
    Orthop Surg; 2022 Jan; 14(1):10-17. PubMed ID: 34812567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Injury Severity and Neurological Recovery after Acute Cervical Spinal Cord Injury: A Comparison of Cerebrospinal Fluid and Magnetic Resonance Imaging Biomarkers.
    Dalkilic T; Fallah N; Noonan VK; Salimi Elizei S; Dong K; Belanger L; Ritchie L; Tsang A; Bourassa-Moreau E; Heran MKS; Paquette SJ; Ailon T; Dea N; Street J; Fisher CG; Dvorak MF; Kwon BK
    J Neurotrauma; 2018 Feb; 35(3):435-445. PubMed ID: 29037121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility and Safety of Cervical Kinematic Magnetic Resonance Imaging in Patients with Cervical Spinal Cord Injury without Fracture and Dislocation.
    Bao Y; Zhong X; Zhu W; Chen Y; Zhou L; Dai X; Liao J; Li Z; Hu K; Bei K; Xiong Y; Hu Y; Zhao Q; Zhu Z; Yu Y; Wu Q; Xi X
    Orthop Surg; 2020 Apr; 12(2):570-581. PubMed ID: 32347006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wallerian degeneration in cervical spinal cord tracts is commonly seen in routine T2-weighted MRI after traumatic spinal cord injury and is associated with impairment in a retrospective study.
    Fischer T; Stern C; Freund P; Schubert M; Sutter R
    Eur Radiol; 2021 May; 31(5):2923-2932. PubMed ID: 33125565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential neurological improvements after conservative treatment in patients with complete motor paralysis caused by cervical spinal cord injury without bone and disc injury.
    Mori E; Ueta T; Maeda T; Ideta R; Yugué I; Kawano O; Shiba K
    J Neurosurg Spine; 2018 Jul; 29(1):1-9. PubMed ID: 29676669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can the acute magnetic resonance imaging features reflect neurologic prognosis in patients with cervical spinal cord injury?
    Matsushita A; Maeda T; Mori E; Yuge I; Kawano O; Ueta T; Shiba K
    Spine J; 2017 Sep; 17(9):1319-1324. PubMed ID: 28501580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Brain and Spinal Injury Center score: a novel, simple, and reproducible method for assessing the severity of acute cervical spinal cord injury with axial T2-weighted MRI findings.
    Talbott JF; Whetstone WD; Readdy WJ; Ferguson AR; Bresnahan JC; Saigal R; Hawryluk GW; Beattie MS; Mabray MC; Pan JZ; Manley GT; Dhall SS
    J Neurosurg Spine; 2015 Oct; 23(4):495-504. PubMed ID: 26161519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictors of intramedullary lesion expansion rate on MR images of patients with subaxial spinal cord injury.
    Le E; Aarabi B; Hersh DS; Shanmuganathan K; Diaz C; Massetti J; Akhtar-Danesh N
    J Neurosurg Spine; 2015 Jun; 22(6):611-21. PubMed ID: 25746115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Predictors of Neurological Outcome within 72 h after Traumatic Cervical Spinal Cord Injury.
    Qiu Z; Wang F; Hong Y; Zhang J; Tang H; Li X; Jiang S; Lv Z; Liu S; Chen S; Liu J
    Sci Rep; 2016 Dec; 6():38909. PubMed ID: 27941855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The diagnostic value of magnetic resonance imaging measurements for assessing cervical spinal canal stenosis.
    Rüegg TB; Wicki AG; Aebli N; Wisianowsky C; Krebs J
    J Neurosurg Spine; 2015 Mar; 22(3):230-6. PubMed ID: 25525959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between the structural changes in the cervical spinal cord and sensorimotor function of children with thoracolumbar spinal cord injury (TLSCI).
    Qi Q; Wang L; Yang B; Jia Y; Wang Y; Xin H; Zheng W; Chen X; Chen Q; Li F; Du J; Lu J; Chen N
    Spinal Cord; 2024 Jul; 62(7):414-420. PubMed ID: 38824252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association Between Magnetic Resonance Imaging-Based Spinal Morphometry and Sensorimotor Behavior in a Hemicontusion Model of Incomplete Cervical Spinal Cord Injury in Rats.
    Chitturi J; Sanganahalli BG; Herman P; Hyder F; Ni L; Elkabes S; Heary R; Kannurpatti SS
    Brain Connect; 2020 Nov; 10(9):479-489. PubMed ID: 32981350
    [No Abstract]   [Full Text] [Related]  

  • 20. Determining the short-term neurological prognosis for acute cervical spinal cord injury using machine learning.
    Okimatsu S; Maki S; Furuya T; Fujiyoshi T; Kitamura M; Inada T; Aramomi M; Yamauchi T; Miyamoto T; Inoue T; Yunde A; Miura M; Shiga Y; Inage K; Orita S; Eguchi Y; Ohtori S
    J Clin Neurosci; 2022 Feb; 96():74-79. PubMed ID: 34998207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.