BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34545527)

  • 1. Impregnation on activated carbon for removal of chemical warfare agents (CWAs) and radioactive content.
    Kiani SS; Farooq A; Ahmad M; Irfan N; Nawaz M; Irshad MA
    Environ Sci Pollut Res Int; 2021 Nov; 28(43):60477-60494. PubMed ID: 34545527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replacement of hazardous chromium impregnating agent from silver/copper/chromium-impregnated active carbon using triethylenediamine to remove hydrogen sulfide, trichloromethane, ammonia, and sulfur dioxide.
    Wu LC; Chung YC
    J Air Waste Manag Assoc; 2009 Mar; 59(3):258-65. PubMed ID: 19320264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Air Pollution and Radiation Monitoring in Collective Protection Facilities.
    Kołacz AM; Wiśnik-Sawka M; Maziejuk M; Natora M; Harmata W; Rytel P; Gajda D
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.
    Osovsky R; Kaplan D; Nir I; Rotter H; Elisha S; Columbus I
    Environ Sci Technol; 2014 Sep; 48(18):10912-8. PubMed ID: 25133545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deploying Portable Gas Chromatography-Mass Spectrometry (GC-MS) to Military Users for the Identification of Toxic Chemical Agents in Theater.
    Leary PE; Kammrath BW; Lattman KJ; Beals GL
    Appl Spectrosc; 2019 Aug; 73(8):841-858. PubMed ID: 31008649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption and destruction of PCDD/Fs using surface-functionalized activated carbons.
    Atkinson JD; Hung PC; Zhang Z; Chang MB; Yan Z; Rood MJ
    Chemosphere; 2015 Jan; 118():136-42. PubMed ID: 25150825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of hydrogen sulfide and sulfur dioxide by carbons impregnated with triethylenediamine.
    Wu LC; Chang TH; Chung YC
    J Air Waste Manag Assoc; 2007 Dec; 57(12):1461-8. PubMed ID: 18200931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adductomics: a promising tool for the verification of chemical warfare agents' exposures in biological samples.
    Golime R; Chandra B; Palit M; Dubey DK
    Arch Toxicol; 2019 Jun; 93(6):1473-1484. PubMed ID: 30923868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential sensing of toxic chemical warfare agents (CWAs) by twisted nanographenes: A first principle approach.
    Sattar N; Sajid H; Tabassum S; Ayub K; Mahmood T; Gilani MA
    Sci Total Environ; 2022 Jun; 824():153858. PubMed ID: 35176369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use by the Russian Army of protective means against German chemical weapon applied during the First World War.
    Budko AA; Ivanovskii YV
    Voen Med Zh; 2017 Mar; 338(3):77-83. PubMed ID: 30794739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of vapor-phase elemental mercury from stack emissions with sulfur-impregnated activated carbon.
    Sowlat MH; Abdollahi M; Gharibi H; Yunesian M; Rastkari N
    Rev Environ Contam Toxicol; 2014; 230():1-34. PubMed ID: 24609516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of sulfur dioxide by carbon impregnated with triethylenediamine, using indigenously developed pilot scale setup.
    Kiani SS; Ullah A; Farooq A; Ahmad M; Irfan N; Nawaz M
    Environ Sci Pollut Res Int; 2022 Apr; 29(20):30311-30323. PubMed ID: 34997487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory conditions and safety in a chemical warfare agent analysis and research laboratory.
    Kenar L; Karayilanoğlu T; Kose S
    Mil Med; 2002 Aug; 167(8):628-33. PubMed ID: 12188231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalized reactive polymers for the removal of chemical warfare agents: A review.
    Snider VG; Hill CL
    J Hazard Mater; 2023 Jan; 442():130015. PubMed ID: 36166906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of chemical warfare agents and toxic industrial chemicals in landfills.
    Bartelt-Hunt SL; Barlaz MA; Knappe DR; Kjeldsen P
    Environ Sci Technol; 2006 Jul; 40(13):4219-25. PubMed ID: 16856738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of chemical warfare agents and related compounds in environmental samples by solid-phase microextraction with gas chromatography.
    Popiel S; Sankowska M
    J Chromatogr A; 2011 Nov; 1218(47):8457-79. PubMed ID: 22015307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.
    Urabe T; Takahashi K; Kitagawa M; Sato T; Kondo T; Enomoto S; Kidera M; Seto Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():437-44. PubMed ID: 24211802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis.
    Kanamori-Kataoka M; Seto Y
    J Chromatogr A; 2015 Sep; 1410():19-27. PubMed ID: 26239699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergism of activated carbon and undoped and nitrogen-doped TiO2 in the photocatalytic degradation of the chemical warfare agents soman, VX, and yperite.
    Cojocaru B; Neaţu S; Pârvulescu VI; Somoghi V; Petrea N; Epure G; Alvaro M; Garcia H
    ChemSusChem; 2009; 2(5):427-36. PubMed ID: 19350607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents.
    López-Maya E; Montoro C; Rodríguez-Albelo LM; Aznar Cervantes SD; Lozano-Pérez AA; Cenís JL; Barea E; Navarro JA
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6790-4. PubMed ID: 25951010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.