These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34545537)

  • 1. Evaluating FIML and multiple imputation in joint ordinal-continuous measurements models with missing data.
    Lim AJ; Cheung MW
    Behav Res Methods; 2022 Jun; 54(3):1063-1077. PubMed ID: 34545537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares.
    Li CH
    Behav Res Methods; 2016 Sep; 48(3):936-49. PubMed ID: 26174714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing Measurement Invariance with Ordinal Missing Data: A Comparison of Estimators and Missing Data Techniques.
    Chen PY; Wu W; Garnier-Villarreal M; Kite BA; Jia F
    Multivariate Behav Res; 2020; 55(1):87-101. PubMed ID: 31099262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study.
    De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA
    BMC Med Res Methodol; 2019 Jan; 19(1):14. PubMed ID: 30630434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of full information maximum likelihood and multiple imputation in structural equation modeling with missing data.
    Lee T; Shi D
    Psychol Methods; 2021 Aug; 26(4):466-485. PubMed ID: 33507765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study.
    De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA
    BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-stage maximum likelihood approach for item-level missing data in regression.
    Chen L; Savalei V; Rhemtulla M
    Behav Res Methods; 2020 Dec; 52(6):2306-2323. PubMed ID: 32333330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple imputation for handling missing outcome data when estimating the relative risk.
    Sullivan TR; Lee KJ; Ryan P; Salter AB
    BMC Med Res Methodol; 2017 Sep; 17(1):134. PubMed ID: 28877666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full Information Maximum Likelihood Estimation for Latent Variable Interactions With Incomplete Indicators.
    Cham H; Reshetnyak E; Rosenfeld B; Breitbart W
    Multivariate Behav Res; 2017; 52(1):12-30. PubMed ID: 27834491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addressing missing data in specification search in measurement invariance testing with Likert-type scale variables: A comparison of two approaches.
    Chen PY; Wu W; Brandt H; Jia F
    Behav Res Methods; 2020 Dec; 52(6):2567-2587. PubMed ID: 32495029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robustness of Parameter Estimation to Assumptions of Normality in the Multidimensional Graded Response Model.
    Wang C; Su S; Weiss DJ
    Multivariate Behav Res; 2018; 53(3):403-418. PubMed ID: 29624093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparison of Multilevel Imputation Schemes for Random Coefficient Models: Fully Conditional Specification and Joint Model Imputation with Random Covariance Matrices.
    Enders CK; Hayes T; Du H
    Multivariate Behav Res; 2018; 53(5):695-713. PubMed ID: 30693802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple imputation methods for missing multilevel ordinal outcomes.
    Dong M; Mitani A
    BMC Med Res Methodol; 2023 May; 23(1):112. PubMed ID: 37161419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative efficiency of joint-model and full-conditional-specification multiple imputation when conditional models are compatible: The general location model.
    Seaman SR; Hughes RA
    Stat Methods Med Res; 2018 Jun; 27(6):1603-1614. PubMed ID: 27597798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the latent mediated effect with ordinal data using the limited-information and Bayesian full-information approaches.
    Chen J; Zhang D; Choi J
    Behav Res Methods; 2015 Dec; 47(4):1260-1273. PubMed ID: 25361865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random.
    Pritikin JN; Brick TR; Neale MC
    Behav Res Methods; 2018 Apr; 50(2):490-500. PubMed ID: 29374390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of methods for imputing ordinal data using multivariate normal imputation: a case study of non-linear effects in a large cohort study.
    Lee KJ; Galati JC; Simpson JA; Carlin JB
    Stat Med; 2012 Dec; 31(30):4164-74. PubMed ID: 22826110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How many imputations are really needed? Some practical clarifications of multiple imputation theory.
    Graham JW; Olchowski AE; Gilreath TD
    Prev Sci; 2007 Sep; 8(3):206-13. PubMed ID: 17549635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings.
    Donneau AF; Mauer M; Lambert P; Molenberghs G; Albert A
    J Biopharm Stat; 2015; 25(3):570-601. PubMed ID: 24905056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selecting polychoric instrumental variables in confirmatory factor analysis: An alternative specification test and effects of instrumental variables.
    Jin S; Cao C
    Br J Math Stat Psychol; 2018 May; 71(2):387-413. PubMed ID: 29323415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.