These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 34545583)

  • 41. Deep learning-based virtual noncontrast CT for volumetric modulated arc therapy planning: Comparison with a dual-energy CT-based approach.
    Koike Y; Ohira S; Akino Y; Sagawa T; Yagi M; Ueda Y; Miyazaki M; Sumida I; Teshima T; Ogawa K
    Med Phys; 2020 Feb; 47(2):371-379. PubMed ID: 31733105
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extensive clinical testing of Deep Learning Segmentation models for thorax and breast cancer radiotherapy planning.
    Mikalsen SG; Skjøtskift T; Flote VG; Hämäläinen NP; Heydari M; Rydén-Eilertsen K
    Acta Oncol; 2023 Oct; 62(10):1184-1193. PubMed ID: 37883678
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-derived organ attention for unpaired CT-MRI deep domain adaptation based MRI segmentation.
    Jiang J; Hu YC; Tyagi N; Wang C; Lee N; Deasy JO; Sean B; Veeraraghavan H
    Phys Med Biol; 2020 Oct; 65(20):205001. PubMed ID: 33027063
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Geometric and dosimetric evaluation of atlas based auto-segmentation of cardiac structures in breast cancer patients.
    Kaderka R; Gillespie EF; Mundt RC; Bryant AK; Sanudo-Thomas CB; Harrison AL; Wouters EL; Moiseenko V; Moore KL; Atwood TF; Murphy JD
    Radiother Oncol; 2019 Feb; 131():215-220. PubMed ID: 30107948
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network.
    Liu Z; Liu X; Xiao B; Wang S; Miao Z; Sun Y; Zhang F
    Phys Med; 2020 Jan; 69():184-191. PubMed ID: 31918371
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prior information guided auto-segmentation of clinical target volume of tumor bed in postoperative breast cancer radiotherapy.
    Xie X; Song Y; Ye F; Wang S; Yan H; Zhao X; Dai J
    Radiat Oncol; 2023 Oct; 18(1):170. PubMed ID: 37840132
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cardio-pulmonary substructure segmentation of radiotherapy computed tomography images using convolutional neural networks for clinical outcomes analysis.
    Haq R; Hotca A; Apte A; Rimner A; Deasy JO; Thor M
    Phys Imaging Radiat Oncol; 2020 Apr; 14():61-66. PubMed ID: 33458316
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches.
    Zhou X
    Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep learning model for automatic contouring of cardiovascular substructures on radiotherapy planning CT images: Dosimetric validation and reader study based clinical acceptability testing.
    Garrett Fernandes M; Bussink J; Stam B; Wijsman R; Schinagl DAX; Monshouwer R; Teuwen J
    Radiother Oncol; 2021 Dec; 165():52-59. PubMed ID: 34688808
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dual center validation of deep learning for automated multi-label segmentation of thoracic anatomy in bedside chest radiographs.
    Busch F; Xu L; Sushko D; Weidlich M; Truhn D; Müller-Franzes G; Heimer MM; Niehues SM; Makowski MR; Hinsche M; Vahldiek JL; Aerts HJ; Adams LC; Bressem KK
    Comput Methods Programs Biomed; 2023 Jun; 234():107505. PubMed ID: 37003043
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep-learning-based direct inversion for material decomposition.
    Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S
    Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Self-adaptive deep learning-based segmentation for universal and functional clinical and preclinical CT image analysis.
    Zwijnen AW; Watzema L; Ridwan Y; van Der Pluijm I; Smal I; Essers J
    Comput Biol Med; 2024 Sep; 179():108853. PubMed ID: 39013341
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anatomical Prior-Based Automatic Segmentation for Cardiac Substructures from Computed Tomography Images.
    Wang X; Li X; Du R; Zhong Y; Lu Y; Song T
    Bioengineering (Basel); 2023 Oct; 10(11):. PubMed ID: 38002391
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy.
    Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC
    Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
    Sandfort V; Yan K; Pickhardt PJ; Summers RM
    Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Learning-based automatic segmentation of arteriovenous malformations on contrast CT images in brain stereotactic radiosurgery.
    Wang T; Lei Y; Tian S; Jiang X; Zhou J; Liu T; Dresser S; Curran WJ; Shu HK; Yang X
    Med Phys; 2019 Jul; 46(7):3133-3141. PubMed ID: 31050804
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.
    Lin YC; Lin CH; Lu HY; Chiang HJ; Wang HK; Huang YT; Ng SH; Hong JH; Yen TC; Lai CH; Lin G
    Eur Radiol; 2020 Mar; 30(3):1297-1305. PubMed ID: 31712961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.