BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34546037)

  • 1. Engineering T4 Bacteriophage for
    Dong J; Chen C; Liu Y; Zhu J; Li M; Rao VB; Tao P
    ACS Synth Biol; 2021 Oct; 10(10):2639-2648. PubMed ID: 34546037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems.
    Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9.
    Tao P; Wu X; Tang WC; Zhu J; Rao V
    ACS Synth Biol; 2017 Oct; 6(10):1952-1961. PubMed ID: 28657724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair.
    Wu X; Zhu J; Tao P; Rao VB
    mBio; 2021 Jun; 12(3):e0136121. PubMed ID: 34154416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9.
    Bryson AL; Hwang Y; Sherrill-Mix S; Wu GD; Lewis JD; Black L; Clark TA; Bushman FD
    mBio; 2015 Jun; 6(3):e00648. PubMed ID: 26081634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Landscape of New Nuclease-Containing Antiphage Systems in Escherichia coli and the Counterdefense Roles of Bacteriophage T4 Genome Modifications.
    Wang S; Sun E; Liu Y; Yin B; Zhang X; Li M; Huang Q; Tan C; Qian P; Rao VB; Tao P
    J Virol; 2023 Jun; 97(6):e0059923. PubMed ID: 37306585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4.
    Yaung SJ; Esvelt KM; Church GM
    PLoS One; 2014; 9(6):e98811. PubMed ID: 24886988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of T4 phage engineering via CRISPR/Cas9.
    Duong MM; Carmody CM; Ma Q; Peters JE; Nugen SR
    Sci Rep; 2020 Oct; 10(1):18229. PubMed ID: 33106580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteriophage T4 nanoparticle capsid surface SOC and HOC bipartite display with enhanced classical swine fever virus immunogenicity: a powerful immunological approach.
    Wu J; Tu C; Yu X; Zhang M; Zhang N; Zhao M; Nie W; Ren Z
    J Virol Methods; 2007 Jan; 139(1):50-60. PubMed ID: 17081627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR-Cas effector complexes.
    Vlot M; Houkes J; Lochs SJA; Swarts DC; Zheng P; Kunne T; Mohanraju P; Anders C; Jinek M; van der Oost J; Dickman MJ; Brouns SJJ
    Nucleic Acids Res; 2018 Jan; 46(2):873-885. PubMed ID: 29253268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of the small outer capsid protein, Soc, on bacteriophage T4: a novel system for high density display of multiple large anthrax toxins and foreign proteins on phage capsid.
    Li Q; Shivachandra SB; Zhang Z; Rao VB
    J Mol Biol; 2007 Jul; 370(5):1006-19. PubMed ID: 17544446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phage display of intact domains at high copy number: a system based on SOC, the small outer capsid protein of bacteriophage T4.
    Ren ZJ; Lewis GK; Wingfield PT; Locke EG; Steven AC; Black LW
    Protein Sci; 1996 Sep; 5(9):1833-43. PubMed ID: 8880907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: a strategy for efficient display of large full-length proteins.
    Shivachandra SB; Rao M; Janosi L; Sathaliyawala T; Matyas GR; Alving CR; Leppla SH; Rao VB
    Virology; 2006 Feb; 345(1):190-8. PubMed ID: 16316672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Display of a PorA peptide from Neisseria meningitidis on the bacteriophage T4 capsid surface.
    Jiang J; Abu-Shilbayeh L; Rao VB
    Infect Immun; 1997 Nov; 65(11):4770-7. PubMed ID: 9353063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 16. CRISPR-Cas9 Based Bacteriophage Genome Editing.
    Zhang X; Zhang C; Liang C; Li B; Meng F; Ai Y
    Microbiol Spectr; 2022 Aug; 10(4):e0082022. PubMed ID: 35880867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.
    Kiro R; Shitrit D; Qimron U
    RNA Biol; 2014; 11(1):42-4. PubMed ID: 24457913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phage T4 SOC and HOC display of biologically active, full-length proteins on the viral capsid.
    Ren Z; Black LW
    Gene; 1998 Jul; 215(2):439-44. PubMed ID: 9714843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T4 bacteriophage as a phage display platform.
    Gamkrelidze M; DÄ…browska K
    Arch Microbiol; 2014 Jul; 196(7):473-9. PubMed ID: 24828789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of Competitive Phage Display-Modified Bacteriophage T4 with Affinity Chromatography.
    DÄ…browska K
    Methods Mol Biol; 2019; 1898():81-87. PubMed ID: 30570725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.