These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34546037)

  • 21. Bacteriophage T4 capsid packaging and unpackaging of DNA and proteins.
    Mullaney JM; Black LW
    Methods Mol Biol; 2014; 1108():69-85. PubMed ID: 24243241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increasing CRISPR/Cas9-mediated gene editing efficiency in T7 phage by reducing the escape rate based on insight into the survival mechanism.
    Sun M; Gao J; Tang H; Wu T; Ma Q; Zhang S; Zuo Y; Li Q
    Acta Biochim Biophys Sin (Shanghai); 2024 Jun; 56(6):937-944. PubMed ID: 38761011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A functional type II-A CRISPR-Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage.
    Hupfeld M; Trasanidou D; Ramazzini L; Klumpp J; Loessner MJ; Kilcher S
    Nucleic Acids Res; 2018 Jul; 46(13):6920-6933. PubMed ID: 30053228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing.
    Stella S; Alcón P; Montoya G
    Nat Struct Mol Biol; 2017 Nov; 24(11):882-892. PubMed ID: 29035385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multicomponent anthrax toxin display and delivery using bacteriophage T4.
    Shivachandra SB; Li Q; Peachman KK; Matyas GR; Leppla SH; Alving CR; Rao M; Rao VB
    Vaccine; 2007 Jan; 25(7):1225-35. PubMed ID: 17069938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of CRISPR and Marker-Based Methods for the Engineering of Phage T7.
    Grigonyte AM; Harrison C; MacDonald PR; Montero-Blay A; Tridgett M; Duncan J; Sagona AP; Constantinidou C; Jaramillo A; Millard A
    Viruses; 2020 Feb; 12(2):. PubMed ID: 32050613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A bipartite bacteriophage T4 SOC and HOC randomized peptide display library: detection and analysis of phage T4 terminase (gp17) and late sigma factor (gp55) interaction.
    Malys N; Chang DY; Baumann RG; Xie D; Black LW
    J Mol Biol; 2002 May; 319(2):289-304. PubMed ID: 12051907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protection from proteolysis using a T4::T7-RNAP phage expression-packaging-processing system.
    Hong YR; Mullaney JM; Black LW
    Gene; 1995 Aug; 162(1):5-11. PubMed ID: 7557416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modification of T2 phage infectivity toward Escherichia coli O157:H7 via using CRISPR/Cas9.
    Hoshiga F; Yoshizaki K; Takao N; Miyanaga K; Tanji Y
    FEMS Microbiol Lett; 2019 Feb; 366(4):. PubMed ID: 30801649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-Cas10 assisted editing of virulent staphylococcal phages.
    Nayeemul Bari SM; Hatoum-Aslan A
    Methods Enzymol; 2019; 616():385-409. PubMed ID: 30691652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orally delivered foot-and-mouth disease virus capsid protomer vaccine displayed on T4 bacteriophage surface: 100% protection from potency challenge in mice.
    Ren ZJ; Tian CJ; Zhu QS; Zhao MY; Xin AG; Nie WX; Ling SR; Zhu MW; Wu JY; Lan HY; Cao YC; Bi YZ
    Vaccine; 2008 Mar; 26(11):1471-81. PubMed ID: 18289743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The endless battle between phages and CRISPR-Cas systems in
    Philippe C; Moineau S
    Biochem Cell Biol; 2021 Aug; 99(4):397-402. PubMed ID: 33534660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies.
    Strotskaya A; Savitskaya E; Metlitskaya A; Morozova N; Datsenko KA; Semenova E; Severinov K
    Nucleic Acids Res; 2017 Feb; 45(4):1946-1957. PubMed ID: 28130424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical transformation mediated CRISPR/Cas9 genome editing in Escherichia coli.
    Sun D; Wang L; Mao X; Fei M; Chen Y; Shen M; Qiu J
    Biotechnol Lett; 2019 Feb; 41(2):293-303. PubMed ID: 30547274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oriented immobilization of bacteriophages for biosensor applications.
    Tolba M; Minikh O; Brovko LY; Evoy S; Griffiths MW
    Appl Environ Microbiol; 2010 Jan; 76(2):528-35. PubMed ID: 19948867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of different types of CRISPR/Cas-based systems in bacteria.
    Liu Z; Dong H; Cui Y; Cong L; Zhang D
    Microb Cell Fact; 2020 Sep; 19(1):172. PubMed ID: 32883277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro and in vivo delivery of genes and proteins using the bacteriophage T4 DNA packaging machine.
    Tao P; Mahalingam M; Marasa BS; Zhang Z; Chopra AK; Rao VB
    Proc Natl Acad Sci U S A; 2013 Apr; 110(15):5846-51. PubMed ID: 23530211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expanding the plant genome editing toolbox with recently developed CRISPR-Cas systems.
    Wada N; Osakabe K; Osakabe Y
    Plant Physiol; 2022 Mar; 188(4):1825-1837. PubMed ID: 35099553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeted Genome Editing of Virulent Pseudomonas Phages Using CRISPR-Cas3.
    Schroven K; Voet M; Lavigne R; Hendrix H
    Methods Mol Biol; 2024; 2793():113-128. PubMed ID: 38526727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.