These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34546050)

  • 1. Biotransformation of Betulonic Acid by the Fungus
    Song KN; Lu YJ; Chu CJ; Wu YN; Huang HL; Fan BY; Chen GT
    J Nat Prod; 2021 Oct; 84(10):2664-2674. PubMed ID: 34546050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial hydroxylation and glycosidation of oleanolic acid by
    Yan S; Lin H; Huang H; Yang M; Xu B; Chen G
    Nat Prod Res; 2019 Jul; 33(13):1849-1855. PubMed ID: 29842789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-Inflammatory 18β-Glycyrrhetinin Acid Derivatives Produced by Biocatalysis.
    Fan B; Jiang B; Yan S; Xu B; Huang H; Chen G
    Planta Med; 2019 Jan; 85(1):56-61. PubMed ID: 30086557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial transformation of betulonic acid by Circinella muscae CGMCC 3.2695 and anti-neuroinflammatory activity of the products.
    Lu Y; Tang Y; Wu Y; Zhang X; Yi Y; Wang W; Wang A; Yang M; Fan B; Chen G
    Phytochemistry; 2022 Dec; 204():113431. PubMed ID: 36100092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of Erythrodiol for New Food Supplements with Anti-Inflammatory Properties.
    Shen P; Wang W; Xu S; Du Z; Wang W; Yu B; Zhang J
    J Agric Food Chem; 2020 May; 68(21):5910-5916. PubMed ID: 32351112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial transformation of glycyrrhetinic acid derivatives by Bacillus subtilis ATCC 6633 and Bacillus megaterium CGMCC 1.1741.
    Shen P; Zhang J; Zhu Y; Wang W; Yu B; Wang W
    Bioorg Med Chem; 2020 Jun; 28(11):115465. PubMed ID: 32299661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New anti-neuroinflammatory steroids against LPS induced NO production in BV2 microglia cells by microbial transformation of isorhodeasapogenin.
    Wang Y; Xiang L; Wang Z; Li J; Xu J; He X
    Bioorg Chem; 2020 Aug; 101():103870. PubMed ID: 32512266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of Cyclodextrine-Complexed Semisynthetic Betulin Derivatives by Plant Cells.
    Häkkinen ST; Nygren H; Maiorova N; Haavikko R; Alakurtti S; Yli-Kauhaluoma J; Rischer H; Oksman-Caldentey KM
    Planta Med; 2018 Jul; 84(9-10):743-748. PubMed ID: 29518814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Derivatization of Soyasapogenol A through Microbial Transformation for Potential Anti-inflammatory Food Supplements.
    Zhou X; Shen P; Wang W; Zhou J; Raj R; Du Z; Xu S; Wang W; Yu B; Zhang J
    J Agric Food Chem; 2021 Jun; 69(24):6791-6798. PubMed ID: 34101468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation of asiatic acid by
    Wu Y; Lu Y; Yi Y; Wang A; Wang W; Yang M; Fan B; Chen G
    Nat Prod Res; 2023; 37(16):2712-2717. PubMed ID: 36218232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of betulinic acid by Circinella muscae and Cunninghamella echinulata to discover anti-inflammatory derivatives.
    Chen C; Song K; Zhang Y; Chu C; Fan B; Song Y; Huang H; Chen G
    Phytochemistry; 2021 Feb; 182():112608. PubMed ID: 33310627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential anti-inflammatory constituents of the stems of Gordonia chrysandra.
    Fu HZ; Li CJ; Yang JZ; Shen ZF; Zhang DM
    J Nat Prod; 2011 May; 74(5):1066-72. PubMed ID: 21473609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of isofraxetin-6-O-β-d-glucopyranoside by Angelica sinensis (Oliv.) Diels callus.
    Zhou D; Zhang Y; Jiang Z; Hou Y; Jiao K; Yan C; Li N
    Bioorg Med Chem Lett; 2017 Jan; 27(2):248-253. PubMed ID: 27919656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two new echinocystic acid derivatives catalyzed by filamentous fungus
    Fu SB; Feng X; Meng QF; Cai Q; Sun DA
    Nat Prod Res; 2019 Jul; 33(13):1842-1848. PubMed ID: 29842795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-inflammatory ursane- and oleanane-type triterpenoids from Vitex negundo var. cannabifolia.
    Li MM; Su XQ; Sun J; Gu YF; Huang Z; Zeng KW; Zhang Q; Zhao YF; Ferreira D; Zjawiony JK; Li J; Tu PF
    J Nat Prod; 2014 Oct; 77(10):2248-54. PubMed ID: 25245917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavonol glycosides and phenylpropanoid glycosides with inhibitory effects on microglial nitric oxide production from Neoshirakia japonica.
    Zhao HY; Wang YQ; Li YC; Lan Q; Liao HB; Wang HS; Liang D
    Fitoterapia; 2021 Jun; 151():104877. PubMed ID: 33667564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotransformation of betulin by Mucor subtilissimus to discover anti-inflammatory derivatives.
    Li J; Jiang B; Chen C; Fan B; Huang H; Chen G
    Phytochemistry; 2019 Oct; 166():112076. PubMed ID: 31351331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotransformation of oleanolic and maslinic methyl esters by Rhizomucor miehei CECT 2749.
    Martinez A; Perojil A; Rivas F; Parra A; Garcia-Granados A; Fernandez-Vivas A
    Phytochemistry; 2015 Sep; 117():500-508. PubMed ID: 26232553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotransformation of 20(R)-panaxadiol by the fungus Rhizopus chinensis.
    Lin XH; Cao MN; He WN; Yu SW; Guo DA; Ye M
    Phytochemistry; 2014 Sep; 105():129-34. PubMed ID: 24994672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbe-mediate transformation of echinocystic acid by whole cells of filamentous fungus Cunninghamella blakesleana CGMCC 3.910.
    Fu S; Feng X; Sun DA
    Mol Biol Rep; 2018 Dec; 45(6):2795-2800. PubMed ID: 30194559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.