These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34546271)

  • 1. Robust three-dimensional nanotube-in-micropillar array electrodes to facilitate size independent electroporation in blood cell therapy.
    Liu X; Chang AY; Ma Y; Hua L; Yang Z; Wang S
    Lab Chip; 2021 Oct; 21(21):4196-4207. PubMed ID: 34546271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow micropillar array electroporation to enhance size specific transfection to a large population of cells.
    Zu Y; Liu X; Chang AY; Wang S
    Bioelectrochemistry; 2020 Apr; 132():107417. PubMed ID: 31830670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell Size-Specific Transfection by Micropillar Array Electroporation.
    Liu X; Zu Y; Wang S
    Methods Mol Biol; 2020; 2050():3-12. PubMed ID: 31468474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size Specific Transfection to Mammalian Cells by Micropillar Array Electroporation.
    Zu Y; Huang S; Lu Y; Liu X; Wang S
    Sci Rep; 2016 Dec; 6():38661. PubMed ID: 27924861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and experimental demonstration of the electric field assisted electroporation microchip for in vitro gene delivery enhancement.
    Lin YC; Li M; Wu CC
    Lab Chip; 2004 Apr; 4(2):104-8. PubMed ID: 15052348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A flexible electrode Array for genetic transfection of different layers of the retina by electroporation.
    Zhang Y; Peng T; Ge Y; Li M; Li C; Xi J; Li Z; Wei Z; Hu Y
    Lab Chip; 2024 Mar; 24(7):1957-1964. PubMed ID: 38353261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell electroporation with a three-dimensional microelectrode array on a printed circuit board.
    Xu Y; Su S; Zhou C; Lu Y; Xing W
    Bioelectrochemistry; 2015 Apr; 102():35-41. PubMed ID: 25483998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific gene transfer with high efficiency onto a carbon nanotube-loaded electrode.
    Inoue Y; Fujimoto H; Ogino T; Iwata H
    J R Soc Interface; 2008 Aug; 5(25):909-18. PubMed ID: 18192165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High efficiency, site-specific transfection of adherent cells with siRNA using microelectrode arrays (MEA).
    Patel C; Muthuswamy J
    J Vis Exp; 2012 Sep; (67):e4415. PubMed ID: 23007885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell electroporation by CNT-featured microfluidic chip.
    Shahini M; Yeow JT
    Lab Chip; 2013 Jul; 13(13):2585-90. PubMed ID: 23511307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of bionic array electric field focusing in plasmid DNA-based gene electrotransfer.
    Browne CJ; Pinyon JL; Housley DM; Crawford EN; Lovell NH; Klugmann M; Housley GD
    Gene Ther; 2016 Apr; 23(4):369-79. PubMed ID: 26826485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoparticles enhanced electroporation for mammalian cell transfection.
    Zu Y; Huang S; Liao WC; Lu Y; Wang S
    J Biomed Nanotechnol; 2014 Jun; 10(6):982-92. PubMed ID: 24749393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.
    Liu B; Chen Y; Luo Z; Zhang W; Tu Q; Jin X
    J Biomater Sci Polym Ed; 2015; 26(16):1229-35. PubMed ID: 26268887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An individually addressable suspended-drop electroporation system for high-throughput cell transfection.
    Xu Y; Lu Y; Xing W
    Lab Chip; 2014 Feb; 14(4):686-90. PubMed ID: 24336759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of Carbon Nanotube-Based Enhancement of Cellular Electroporation under Nanosecond Pulsed Electric Fields.
    Mi Y; Liu Q; Li P; Xu J
    Biomed Res Int; 2019; 2019():9654583. PubMed ID: 31930142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Electrode Distance in Grid Electrode: Numerical Models and In Vitro Tests.
    Ongaro A; Campana LG; De Mattei M; Di Barba P; Dughiero F; Forzan M; Mognaschi ME; Pellati A; Rossi CR; Bernardello C; Sieni E
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818764498. PubMed ID: 29558871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of gene electrotransfer efficiency based on electroporation volume and electrophoretic movement of plasmid DNA.
    Forjanič T; Miklavčič D
    Biomed Eng Online; 2018 Jun; 17(1):80. PubMed ID: 29914508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.