These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34546276)

  • 1. Lattice distortion-enhanced superlubricity of (Mo, X)S
    Li P; Lu J; Wang WY; Sui X; Zou C; Zhang Y; Wang J; Lin D; Lu Z; Song H; Fan X; Hao J; Li J; Liu W
    Nanoscale; 2021 Oct; 13(38):16234-16243. PubMed ID: 34546276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene.
    Yoo H; Engelke R; Carr S; Fang S; Zhang K; Cazeaux P; Sung SH; Hovden R; Tsen AW; Taniguchi T; Watanabe K; Yi GC; Kim M; Luskin M; Tadmor EB; Kaxiras E; Kim P
    Nat Mater; 2019 May; 18(5):448-453. PubMed ID: 30988451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moiré Potential, Lattice Corrugation, and Band Gap Spatial Variation in a Twist-Free MoTe
    Geng WT; Wang V; Liu YC; Ohno T; Nara J
    J Phys Chem Lett; 2020 Apr; 11(7):2637-2646. PubMed ID: 32188242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moiré patterns of twisted bilayer antimonene and their structural and electronic transition.
    An Q; Moutanabbir O; Guo H
    Nanoscale; 2021 Aug; 13(31):13427-13436. PubMed ID: 34477748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial friction of vdW heterostructures affected by in-plane strain.
    Zhou X; Chen P; Xu RG; Zhang C; Zhang J
    Nanotechnology; 2022 Oct; 34(1):. PubMed ID: 36174390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS
    Zhang C; Chuu CP; Ren X; Li MY; Li LJ; Jin C; Chou MY; Shih CK
    Sci Adv; 2017 Jan; 3(1):e1601459. PubMed ID: 28070558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures.
    Liao M; Nicolini P; Du L; Yuan J; Wang S; Yu H; Tang J; Cheng P; Watanabe K; Taniguchi T; Gu L; Claerbout VEP; Silva A; Kramer D; Polcar T; Yang R; Shi D; Zhang G
    Nat Mater; 2022 Jan; 21(1):47-53. PubMed ID: 34354215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superlubricity of a graphene/MoS
    Wang L; Zhou X; Ma T; Liu D; Gao L; Li X; Zhang J; Hu Y; Wang H; Dai Y; Luo J
    Nanoscale; 2017 Aug; 9(30):10846-10853. PubMed ID: 28726941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: a first-principles study.
    Wang LF; Ma TB; Hu YZ; Zheng Q; Wang H; Luo J
    Nanotechnology; 2014 Sep; 25(38):385701. PubMed ID: 25180979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interlayer Interactions in 1D Van der Waals Moiré Superlattices.
    Zhao S; Kitaura R; Moon P; Koshino M; Wang F
    Adv Sci (Weinh); 2022 Jan; 9(2):e2103460. PubMed ID: 34841726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring Nanoscale Friction in MX2 Transition Metal Dichalcogenides.
    Cammarata A; Polcar T
    Inorg Chem; 2015 Jun; 54(12):5739-44. PubMed ID: 26000720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interlayer Friction and Superlubricity in Single-Crystalline Contact Enabled by Two-Dimensional Flake-Wrapped Atomic Force Microscope Tips.
    Liu Y; Song A; Xu Z; Zong R; Zhang J; Yang W; Wang R; Hu Y; Luo J; Ma T
    ACS Nano; 2018 Aug; 12(8):7638-7646. PubMed ID: 30060665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural superlubricity in 2D van der Waals heterojunctions.
    Yuan J; Yang R; Zhang G
    Nanotechnology; 2021 Dec; 33(10):. PubMed ID: 34229304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural superlubricity at the interface of penta-BN
    Wang H; Zhang H; Zhang X; Cao T; Shi J; Fan X
    Phys Chem Chem Phys; 2024 Jul; 26(27):18871-18880. PubMed ID: 38946706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Quantum-Dot Arrays in Moiré Superlattices of Non-van der Waals Materials.
    Song Z; Wang Y; Zheng H; Narang P; Wang LW
    J Am Chem Soc; 2022 Aug; 144(32):14657-14667. PubMed ID: 35921553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling Atomic-Scale Moiré Features and Atomic Reconstructions in High-Angle Commensurately Twisted Transition Metal Dichalcogenide Homobilayers.
    Zhao X; Qiao J; Chan SM; Li J; Dan J; Ning S; Zhou W; Quek SY; Pennycook SJ; Loh KP
    Nano Lett; 2021 Apr; 21(7):3262-3270. PubMed ID: 33749268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroscale Superlubricity on Nanoscale Graphene Moiré Structure-Assembled Surface via Counterface Hydrogen Modulation.
    Wang Y; Yang X; Liang H; Zhao J; Zhang J
    Adv Sci (Weinh); 2024 May; 11(19):e2309701. PubMed ID: 38483889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying Strain in Moiré Superlattice.
    Quan J; Chen G; Linhart L; Liu Z; Taniguchi T; Watanabe K; Libisch F; Huang R; Li X
    Nano Lett; 2023 Dec; 23(24):11510-11516. PubMed ID: 38085265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creation of moiré bands in a monolayer semiconductor by spatially periodic dielectric screening.
    Xu Y; Horn C; Zhu J; Tang Y; Ma L; Li L; Liu S; Watanabe K; Taniguchi T; Hone JC; Shan J; Mak KF
    Nat Mater; 2021 May; 20(5):645-649. PubMed ID: 33479527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a graphene layer probe to measure force interactions in layered heterojunctions.
    Li J; Li J; Jiang L; Luo J
    Nanoscale; 2020 Mar; 12(9):5435-5443. PubMed ID: 32080698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.