These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mosquito Age Grading and Vector-Control Programmes. Johnson BJ; Hugo LE; Churcher TS; Ong OTW; Devine GJ Trends Parasitol; 2020 Jan; 36(1):39-51. PubMed ID: 31836285 [TBL] [Abstract][Full Text] [Related]
5. Novel control strategies for mosquito-borne diseases. Jones RT; Ant TH; Cameron MM; Logan JG Philos Trans R Soc Lond B Biol Sci; 2021 Feb; 376(1818):20190802. PubMed ID: 33357056 [TBL] [Abstract][Full Text] [Related]
6. Robust mosquito species identification from diverse body and wing images using deep learning. Nolte K; Sauer FG; Baumbach J; Kollmannsberger P; Lins C; Lühken R Parasit Vectors; 2024 Sep; 17(1):372. PubMed ID: 39223629 [TBL] [Abstract][Full Text] [Related]
7. Global mosquito observations dashboard (GMOD): creating a user-friendly web interface fueled by citizen science to monitor invasive and vector mosquitoes. Uelmen JA; Clark A; Palmer J; Kohler J; Van Dyke LC; Low R; Mapes CD; Carney RM Int J Health Geogr; 2023 Oct; 22(1):28. PubMed ID: 37898732 [TBL] [Abstract][Full Text] [Related]
8. Mosquito Control Based on Pesticides and Endosymbiotic Bacterium Wolbachia. Hu L; Yang C; Hui Y; Yu J Bull Math Biol; 2021 Apr; 83(5):58. PubMed ID: 33847843 [TBL] [Abstract][Full Text] [Related]
9. Mosquito vectors and the spread of cancer: an overlooked connection? Benelli G; Lo Iacono A; Canale A; Mehlhorn H Parasitol Res; 2016 Jun; 115(6):2131-7. PubMed ID: 27053131 [TBL] [Abstract][Full Text] [Related]
10. Differential attraction in mosquito-human interactions and implications for disease control. Martinez J; Showering A; Oke C; Jones RT; Logan JG Philos Trans R Soc Lond B Biol Sci; 2021 Feb; 376(1818):20190811. PubMed ID: 33357061 [TBL] [Abstract][Full Text] [Related]
11. An overview of technologies available to monitor behaviours of mosquitoes. Javed N; Paradkar PN; Bhatti A Acta Trop; 2024 Oct; 258():107347. PubMed ID: 39103110 [TBL] [Abstract][Full Text] [Related]
12. Perceptions and practices of mosquito-borne diseases in Alabama - is concern where it should be? Morse W; Izenour K; McKenzie B; Lessard S; Zohdy S BMC Public Health; 2019 Jul; 19(1):987. PubMed ID: 31337359 [TBL] [Abstract][Full Text] [Related]
16. INFRAVEC: research capacity for the implementation of genetic control of mosquitoes. Crisanti A Pathog Glob Health; 2013 Dec; 107(8):458-62. PubMed ID: 24428829 [TBL] [Abstract][Full Text] [Related]
17. Artificial intelligence (AI): a new window to revamp the vector-borne disease control. Nayak B; Khuntia B; Murmu LK; Sahu B; Pandit RS; Barik TK Parasitol Res; 2023 Feb; 122(2):369-379. PubMed ID: 36515751 [TBL] [Abstract][Full Text] [Related]
18. Implications of mosquito metabolism on vector competence. Gao L; Yang W; Wang J Insect Sci; 2024 Jun; 31(3):674-682. PubMed ID: 37907431 [TBL] [Abstract][Full Text] [Related]
19. Coordination among neighbors improves the efficacy of Zika control despite economic costs. Lemanski NJ; Schwab SR; Fonseca DM; Fefferman NH PLoS Negl Trop Dis; 2020 Jun; 14(6):e0007870. PubMed ID: 32569323 [TBL] [Abstract][Full Text] [Related]
20. Georgia's collaborative approach to expanding mosquito surveillance in response to Zika virus: a case study. Rustin RC; Martin D; Sevilimedu V; Pandeya S; Rochani H; Kelly R US Army Med Dep J; 2017; (1-17):23-33. PubMed ID: 28511271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]