These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 34546412)
21. A Novel Hybrid Deep Learning Approach for Skin Lesion Segmentation and Classification. Thapar P; Rakhra M; Cazzato G; Hossain MS J Healthc Eng; 2022; 2022():1709842. PubMed ID: 35480147 [TBL] [Abstract][Full Text] [Related]
22. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Fröhling S; Utikal JS; von Kalle C; Eur J Cancer; 2019 Apr; 111():148-154. PubMed ID: 30852421 [TBL] [Abstract][Full Text] [Related]
23. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. Marchetti MA; Codella NCF; Dusza SW; Gutman DA; Helba B; Kalloo A; Mishra N; Carrera C; Celebi ME; DeFazio JL; Jaimes N; Marghoob AA; Quigley E; Scope A; Yélamos O; Halpern AC; J Am Acad Dermatol; 2018 Feb; 78(2):270-277.e1. PubMed ID: 28969863 [TBL] [Abstract][Full Text] [Related]
24. [The Rise of Artificial Intelligence - High Prediction Accuracy in Early Detection of Pigmented Melanoma]. Jutzi T; Krieghoff-Henning EI; Brinker TJ Laryngorhinootologie; 2023 Jul; 102(7):496-503. PubMed ID: 36580975 [TBL] [Abstract][Full Text] [Related]
25. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Brinker TJ; Hekler A; Enk AH; Klode J; Hauschild A; Berking C; Schilling B; Haferkamp S; Schadendorf D; Holland-Letz T; Utikal JS; von Kalle C; Eur J Cancer; 2019 May; 113():47-54. PubMed ID: 30981091 [TBL] [Abstract][Full Text] [Related]
26. Deep learning-based, computer-aided classifier developed with dermoscopic images shows comparable performance to 164 dermatologists in cutaneous disease diagnosis in the Chinese population. Wang SQ; Zhang XY; Liu J; Tao C; Zhu CY; Shu C; Xu T; Jin HZ Chin Med J (Engl); 2020 Sep; 133(17):2027-2036. PubMed ID: 32826613 [TBL] [Abstract][Full Text] [Related]
27. Deep neural networks are superior to dermatologists in melanoma image classification. Brinker TJ; Hekler A; Enk AH; Berking C; Haferkamp S; Hauschild A; Weichenthal M; Klode J; Schadendorf D; Holland-Letz T; von Kalle C; Fröhling S; Schilling B; Utikal JS Eur J Cancer; 2019 Sep; 119():11-17. PubMed ID: 31401469 [TBL] [Abstract][Full Text] [Related]
28. Validity and Reliability of Dermoscopic Criteria Used to Differentiate Nevi From Melanoma: A Web-Based International Dermoscopy Society Study. Carrera C; Marchetti MA; Dusza SW; Argenziano G; Braun RP; Halpern AC; Jaimes N; Kittler HJ; Malvehy J; Menzies SW; Pellacani G; Puig S; Rabinovitz HS; Scope A; Soyer HP; Stolz W; Hofmann-Wellenhof R; Zalaudek I; Marghoob AA JAMA Dermatol; 2016 Jul; 152(7):798-806. PubMed ID: 27074267 [TBL] [Abstract][Full Text] [Related]
29. Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Haenssle HA; Fink C; Toberer F; Winkler J; Stolz W; Deinlein T; Hofmann-Wellenhof R; Lallas A; Emmert S; Buhl T; Zutt M; Blum A; Abassi MS; Thomas L; Tromme I; Tschandl P; Enk A; Rosenberger A; Ann Oncol; 2020 Jan; 31(1):137-143. PubMed ID: 31912788 [TBL] [Abstract][Full Text] [Related]
30. Dermoscopic diagnostic performance of Japanese dermatologists for skin tumors differs by patient origin: A deep learning convolutional neural network closes the gap. Minagawa A; Koga H; Sano T; Matsunaga K; Teshima Y; Hamada A; Houjou Y; Okuyama R J Dermatol; 2021 Feb; 48(2):232-236. PubMed ID: 33063398 [TBL] [Abstract][Full Text] [Related]
31. Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas. Fink C; Blum A; Buhl T; Mitteldorf C; Hofmann-Wellenhof R; Deinlein T; Stolz W; Trennheuser L; Cussigh C; Deltgen D; Winkler JK; Toberer F; Enk A; Rosenberger A; Haenssle HA J Eur Acad Dermatol Venereol; 2020 Jun; 34(6):1355-1361. PubMed ID: 31856342 [TBL] [Abstract][Full Text] [Related]
32. Clinician's Ability to Identify Non-Melanoma Skin Cancer on 3D-Total Body Photography Sectors that Were Initially Identified during In-Person Skin Examination with Dermoscopy. Hobelsberger S; Steininger J; Laske J; Berndt K; Meier F; Beissert S; Gellrich FF Dermatology; 2024; 240(1):142-151. PubMed ID: 37931611 [TBL] [Abstract][Full Text] [Related]
33. Association Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma Recognition. Winkler JK; Fink C; Toberer F; Enk A; Deinlein T; Hofmann-Wellenhof R; Thomas L; Lallas A; Blum A; Stolz W; Haenssle HA JAMA Dermatol; 2019 Oct; 155(10):1135-1141. PubMed ID: 31411641 [TBL] [Abstract][Full Text] [Related]
34. Skin-CAD: Explainable deep learning classification of skin cancer from dermoscopic images by feature selection of dual high-level CNNs features and transfer learning. Attallah O Comput Biol Med; 2024 Aug; 178():108798. PubMed ID: 38925085 [TBL] [Abstract][Full Text] [Related]
36. Assessment of Diagnostic Performance of Dermatologists Cooperating With a Convolutional Neural Network in a Prospective Clinical Study: Human With Machine. Winkler JK; Blum A; Kommoss K; Enk A; Toberer F; Rosenberger A; Haenssle HA JAMA Dermatol; 2023 Jun; 159(6):621-627. PubMed ID: 37133847 [TBL] [Abstract][Full Text] [Related]
37. Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting. Giavina-Bianchi M; de Sousa RM; Paciello VZA; Vitor WG; Okita AL; Prôa R; Severino GLDS; Schinaid AA; Espírito Santo R; Machado BS PLoS One; 2021; 16(9):e0257006. PubMed ID: 34550970 [TBL] [Abstract][Full Text] [Related]
38. Computational neural network in melanocytic lesions diagnosis: artificial intelligence to improve diagnosis in dermatology? Aractingi S; Pellacani G Eur J Dermatol; 2019 Apr; 29(S1):4-7. PubMed ID: 31017580 [TBL] [Abstract][Full Text] [Related]
39. Skin Cancer Detection in Diverse Skin Tones by Machine Learning Combining Audio and Visual Convolutional Neural Networks. Walker BN; Blalock TW; Leibowitz R; Oron Y; Dascalu D; David EO; Dascalu A Oncology; 2024 Sep; ():1-8. PubMed ID: 39312888 [TBL] [Abstract][Full Text] [Related]
40. Efficacy of a Deep Learning Convolutional Neural Network System for Melanoma Diagnosis in a Hospital Population. Martin-Gonzalez M; Azcarraga C; Martin-Gil A; Carpena-Torres C; Jaen P Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409575 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]