BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 34546701)

  • 1. Plasmon-Driven Interfacial Catalytic Reactions in Plasmonic MOF Nanoparticles.
    Xie X; Zhang Y; Zhang L; Zheng J; Huang Y; Fa H
    Anal Chem; 2021 Oct; 93(39):13219-13225. PubMed ID: 34546701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SERS Monitored Kinetic Process of Gaseous Thiophenol Compound in Plasmonic MOF Nanoparticles.
    Xie X; Gao N; Huang Y; Fang Y
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51468-51475. PubMed ID: 36321296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-driven catalytic reactions in optoplasmonic sandwich hybrid structure.
    Zhang X; Xie X; Zhang L; Chen Z; Huang Y
    Appl Opt; 2023 Jan; 62(2):506-510. PubMed ID: 36630253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning Enabled SERS Identification of Gaseous Molecules on Flexible Plasmonic MOF Nanowire Films.
    Li M; He X; Wu C; Wang L; Zhang X; Gong X; Zeng X; Huang Y
    ACS Sens; 2024 Feb; 9(2):979-987. PubMed ID: 38299870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility.
    Zheng G; de Marchi S; López-Puente V; Sentosun K; Polavarapu L; Pérez-Juste I; Hill EH; Bals S; Liz-Marzán LM; Pastoriza-Santos I; Pérez-Juste J
    Small; 2016 Aug; 12(29):3935-43. PubMed ID: 27273895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optoplasmonic MOFs film for SERS detection.
    Zhang X; Xie X; Zhang L; Yao K; Huang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 278():121362. PubMed ID: 35576840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-driven surface catalysis in hybridized plasmonic gap modes.
    Wang H; Liu T; Huang Y; Fang Y; Liu R; Wang S; Wen W; Sun M
    Sci Rep; 2014 Nov; 4():7087. PubMed ID: 25404139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SERS spectral evolution of azo-reactions mediated by plasmonic Au@Ag core-shell nanorods.
    Hu M; Huang Z; Liu R; Zhou N; Tang H; Meng G
    Nanoscale Adv; 2022 Nov; 4(22):4730-4738. PubMed ID: 36381518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-Situ Monitoring the SERS Spectra of para-Aminothiophenol Adsorbed on Plasmon-Tunable Au@Ag Core-Shell Nanostars.
    Ke Y; Chen B; Hu M; Zhou N; Huang Z; Meng G
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precisely Controllable Core-Shell Ag@Carbon Dots Nanoparticles: Application to in Situ Super-Sensitive Monitoring of Catalytic Reactions.
    Jin J; Zhu S; Song Y; Zhao H; Zhang Z; Guo Y; Li J; Song W; Yang B; Zhao B
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27956-27965. PubMed ID: 27673572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Organic Framework-Enabled Trapping of Volatile Organic Compounds into Plasmonic Nanogaps for Surface-Enhanced Raman Scattering Detection.
    Liu Y; Chui KK; Fang Y; Wen S; Zhuo X; Wang J
    ACS Nano; 2024 Apr; 18(17):11234-11244. PubMed ID: 38630523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ SERS monitoring of plasmon-driven catalytic reaction on gap-controlled Ag nanoparticle arrays under 785 nm irradiation.
    Liu Y; Zhang L; Liu X; Zhang Y; Yan Y; Zhao Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120803. PubMed ID: 35007906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oxidant and laser power-dependent plasmon-driven surface photocatalysis reaction of p-aminothiophenol dimerizing into p,p'-dimercaptoazobenzene on Au nanoparticles.
    Tan E; Yin P; Yu C; Yu G; Zhao C
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Sep; 166():15-18. PubMed ID: 27179296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy.
    Zhang Y; Hu Y; Li G; Zhang R
    Mikrochim Acta; 2019 Jun; 186(7):477. PubMed ID: 31250191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascertaining p,p'-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles.
    Fang Y; Li Y; Xu H; Sun M
    Langmuir; 2010 Jun; 26(11):7737-46. PubMed ID: 20455558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early-stage oral cancer diagnosis by artificial intelligence-based SERS using Ag NWs@ZIF core-shell nanochains.
    Xie X; Yu W; Chen Z; Wang L; Yang J; Liu S; Li L; Li Y; Huang Y
    Nanoscale; 2023 Aug; 15(32):13466-13472. PubMed ID: 37548371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-Mediated Chemical Reactions on Nanostructures Unveiled by Surface-Enhanced Raman Spectroscopy.
    Zhan C; Chen XJ; Huang YF; Wu DY; Tian ZQ
    Acc Chem Res; 2019 Oct; 52(10):2784-2792. PubMed ID: 31532621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon catalytic PATP coupling reaction on Ag-NPs/graphite studied
    Zhong H; Chen J; Chen J; Tao R; Jiang J; Hu Y; Xu J; Zhang T; Liao J
    Phys Chem Chem Phys; 2020 Oct; 22(41):23482-23490. PubMed ID: 32820299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems.
    Pan L; Huang Y; Yang Y; Xiong W; Chen G; Su X; Wei H; Wang S; Wen W
    Sci Rep; 2015 Nov; 5():17223. PubMed ID: 26601698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three Dimensional Hybrids of Vertical Graphene-nanosheet Sandwiched by Ag-nanoparticles for Enhanced Surface Selectively Catalytic Reactions.
    Zhao J; Sun M; Liu Z; Quan B; Gu C; Li J
    Sci Rep; 2015 Nov; 5():16019. PubMed ID: 26522142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.