BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34546726)

  • 1. Multiplexed DNA-Directed Patterning of Antibodies for Applications in Cell Subpopulation Analysis.
    Kozminsky M; Scheideler OJ; Li B; Liu NK; Sohn LL
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46421-46430. PubMed ID: 34546726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of protein expression on cancer cell capture using the Human Transferrin Receptor (CD71) as an affinity ligand.
    Lyons VJ; Helms A; Pappas D
    Anal Chim Acta; 2019 Oct; 1076():154-161. PubMed ID: 31203960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device.
    Galletti G; Sung MS; Vahdat LT; Shah MA; Santana SM; Altavilla G; Kirby BJ; Giannakakou P
    Lab Chip; 2014 Jan; 14(1):147-56. PubMed ID: 24202699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device.
    Du Z; Cheng KH; Vaughn MW; Collie NL; Gollahon LS
    Biomed Microdevices; 2007 Feb; 9(1):35-42. PubMed ID: 17103049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'.
    Chikaishi Y; Yoneda K; Ohnaga T; Tanaka F
    Oncol Rep; 2017 Jan; 37(1):77-82. PubMed ID: 27840987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Microfluidic Labyrinth for the Label-free Isolation of Circulating Tumor Cells.
    Lin E; Rivera-Báez L; Fouladdel S; Yoon HJ; Guthrie S; Wieger J; Deol Y; Keller E; Sahai V; Simeone DM; Burness ML; Azizi E; Wicha MS; Nagrath S
    Cell Syst; 2017 Sep; 5(3):295-304.e4. PubMed ID: 28941584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA fragment-assisted microfluidic chip for capture and release of circulating tumor cells.
    Chen D; Wen J; Zeng S; Ma H
    Electrophoresis; 2019 Nov; 40(21):2845-2852. PubMed ID: 31267582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle modification of microfluidic cell separation for cancer cell detection and isolation.
    Zhou Y; Dong Z; Andarge H; Li W; Pappas D
    Analyst; 2019 Dec; 145(1):257-267. PubMed ID: 31746823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free ferrohydrodynamic cell separation of circulating tumor cells.
    Zhao W; Cheng R; Jenkins BD; Zhu T; Okonkwo NE; Jones CE; Davis MB; Kavuri SK; Hao Z; Schroeder C; Mao L
    Lab Chip; 2017 Sep; 17(18):3097-3111. PubMed ID: 28809987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic barcode assay for antibody-based confirmatory diagnostics.
    Araz MK; Apori AA; Salisbury CM; Herr AE
    Lab Chip; 2013 Oct; 13(19):3910-20. PubMed ID: 23925585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Patterning Capture Antibodies Using Microcontact Printing and Dry-Film Resists.
    Temiz Y; Lovchik RD; Delamarche E
    Methods Mol Biol; 2017; 1547():37-47. PubMed ID: 28044285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Microfluidic Instrument for Label-Free and High-Throughput Cell Separation.
    Zhang X; Zhu Z; Xiang N; Long F; Ni Z
    Anal Chem; 2018 Mar; 90(6):4212-4220. PubMed ID: 29493225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-performance microsystem for isolating circulating tumor cells.
    Zheng X; Cheung LS; Schroeder JA; Jiang L; Zohar Y
    Lab Chip; 2011 Oct; 11(19):3269-76. PubMed ID: 21837324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic cell surface antigen expression analysis using a single antibody type.
    Zhang Y; Pappas D
    Analyst; 2016 Feb; 141(4):1440-7. PubMed ID: 26814637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic immunodetection of cancer cells via site-specific microcontact printing of antibodies on nanoporous surface.
    Ng E; Hoshino K; Zhang X
    Methods; 2013 Oct; 63(3):266-75. PubMed ID: 24012763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-selective collection of circulating tumor cells using Vortex technology.
    Sollier E; Go DE; Che J; Gossett DR; O'Byrne S; Weaver WM; Kummer N; Rettig M; Goldman J; Nickols N; McCloskey S; Kulkarni RP; Di Carlo D
    Lab Chip; 2014 Jan; 14(1):63-77. PubMed ID: 24061411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microchip filter device incorporating slit arrays and 3-D flow for detection of circulating tumor cells using CAV1-EpCAM conjugated microbeads.
    Kim YJ; Koo GB; Lee JY; Moon HS; Kim DG; Lee DG; Lee JY; Oh JH; Park JM; Kim MS; Woo HG; Kim SI; Kang P; Choi W; Sim TS; Park WY; Lee JG; Kim YS
    Biomaterials; 2014 Aug; 35(26):7501-10. PubMed ID: 24917030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A PLGA nanofiber microfluidic device for highly efficient isolation and release of different phenotypic circulating tumor cells based on dual aptamers.
    Wu Z; Pan Y; Wang Z; Ding P; Gao T; Li Q; Hu M; Zhu W; Pei R
    J Mater Chem B; 2021 Mar; 9(9):2212-2220. PubMed ID: 33616137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformability and size-based cancer cell separation using an integrated microfluidic device.
    Pang L; Shen S; Ma C; Ma T; Zhang R; Tian C; Zhao L; Liu W; Wang J
    Analyst; 2015 Nov; 140(21):7335-46. PubMed ID: 26366443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.